Abstract:
A superabrasive material and method of making the superabrasive material are provided. The superabrasive material may comprise a superabrasive crystal having an irregular surface. The superabrasive material further comprises a plurality of structure defects within the superabrasive crystal. The plurality of structure defects may cause micro-chipping when used as grinding materials.
Abstract:
A superabrasive cutter and a method of making the superabrasive cutter are disclosed. The superabrasive cutter may comprise a plurality of polycrystalline superabrasive particles and about 0.01% to about 4% by weight of the superabrasive particles of a metal or metal alloy. The metal or the metal alloy may be immiscible with a catalyst for forming the polycrystalline superabrasive particles.
Abstract:
A system and a method of testing a superabrasive cutter are disclosed. The system of testing a superabrasive cutter may comprise a spinning wheel holding the superabrasive cutter; a rock feeding into a rotation of the superabrasive cutter on the spinning wheel; and a plurality of sensors operably attaching to the spinning wheel and the rock to detect properties of the superabrasive cutter. The method of testing a superabrasive cutter may comprise steps of attaching a superabrasive cutter to a spinning wheel; moving a rock into a rotation of the superabrasive cutter on the spinning wheel; and communicably coupling a first sensor to the superabrasive cutter.
Abstract:
Polycrystalline diamond bodies having an annular region of diamond grains and a core region of diamond grains and methods of making the same are disclosed. In one embodiment, a polycrystalline diamond body includes an annular region of inter-bonded diamond grains having a first characteristic property and a core region of inter-bonded diamond grains bonded to the annular region and having a second characteristic property that differs from the first characteristic property. The annular region decreases in thickness from a perimeter surface of the polycrystalline diamond body towards a centerline axis.
Abstract:
Polycrystalline diamond bodies having an annular region of diamond grains and a core region of diamond grains and methods of making the same are disclosed. In one embodiment, a polycrystalline diamond body includes an annular region of inter-bonded diamond grains having a first characteristic property and a core region of inter-bonded diamond grains bonded to the annular region and having a second characteristic property that differs from the first characteristic property. The annular region decreases in thickness from a perimeter surface of the polycrystalline diamond body towards a centerline axis.
Abstract:
Polycrystalline diamond bodies having an annular region of diamond grains and a core region of diamond grains and methods of making the same are disclosed. In one embodiment, a polycrystalline diamond body includes an annular region of inter-bonded diamond grains having a first characteristic property and a core region of inter-bonded diamond grains bonded to the annular region and having a second characteristic property that differs from the first characteristic property. The annular region decreases in thickness from a perimeter surface of the polycrystalline diamond body towards a centerline axis.
Abstract:
Polycrystalline diamond cutting elements having enhanced thermal stability, drill bits incorporating the same, and methods of making the same are disclosed herein. In one embodiment, a cutting element includes a substrate having a metal carbide and a polycrystalline diamond body bonded to the substrate. The polycrystalline diamond body includes a plurality of diamond grains bonded to adjacent diamond grains by diamond-to-diamond bonds and a plurality of interstitial regions positioned between adjacent diamond grains. At least a portion of the plurality of interstitial regions comprise lead or lead alloy, a catalyst material, metal carbide, or combinations thereof. At least a portion of the plurality of interstitial regions comprise lead or lead alloy that coat portions of the adjacent diamond grains such that the lead or lead alloy reduces contact between the diamond and the catalyst.
Abstract:
Polycrystalline diamond bodies having an annular region of diamond grains and a core region of diamond grains and methods of making the same are disclosed. In one embodiment, a polycrystalline diamond body (120) includes an annular region (142) of inter-bonded diamond grains having a first characteristic property and a core region (140) of inter-bonded diamond grains bonded to the annular region and having a second characteristic property that differs from the first characteristic property. The annular region decreases in thickness from a perimeter surface of the polycrystalline diamond body towards a centerline axis.
Abstract:
Polycrystalline diamond bodies having an annular region of diamond grains and a core region of diamond grains and methods of making the same are disclosed. In one embodiment, a polycrystalline diamond body (120) includes an annular region (142) of inter-bonded diamond grains having a first characteristic property and a core region (140) of inter-bonded diamond grains bonded to the annular region and having a second characteristic property that differs from the first characteristic property. The annular region decreases in thickness from a perimeter surface of the polycrystalline diamond body towards a centerline axis.
Abstract:
A superabrasive material and method of making the superabrasive material are provided. The superabrasive material may comprise a superabrasive crystal having an irregular surface. The superabrasive material further comprises a plurality of structure defects within the superabrasive crystal. The plurality of structure defects may cause micro-chipping when used as grinding materials.