Abstract:
A control device detects zero crossings of a current through a rectifier transistor during plural cycles; generates a turn-on signal of the transistor and inserts a turn-on delay equal to a fixed first quantity from the start time of for each cycle. The control device starts counting consecutive cycles after inserting the turn-on delay; detects whether a zero crossing of the current through the transistor after turning on said transistor has occurred; if no zero crossing is detected before counting a number N of consecutive cycles, decreases the turn-on delay by a fixed second quantity for the next cycle; if a zero crossing is detected, maintains turned on the transistor; if the turn-on delay is smaller than first quantity, increases the turn-on delay o for the next switching cycle; and if the turn-on delay is equal to the first quantity, maintains the turn-on delay for the next switching cycle.
Abstract:
A control circuit for a switching voltage regulator is configured to receive an error signal representative of a regulator output voltage in relation to a nominal output voltage, and includes a set/reset flip-flop, a hysteresis comparator and a logic circuit. The flip-flop is configured to produce a switching control signal according to logic values at its set and reset terminals. The comparator is configured to produce a set signal at the set terminal when an error signal drops below a first value, and a reset signal when the error signal rises above a second value. The logic circuit is configured to prevent transmission of the reset signal to the reset terminal during a selected minimum time period and to thereafter enable transmission of the reset signal, and further, to produce an alternate reset signal at the reset terminal at the end of the selected maximum time period.
Abstract:
A method and apparatus for an active discharge of an X-capacitor are provided. A sensor signal, indicative of a voltage at the capacitor, is compared with a lower and upper threshold values. A first value of a smaller one of the lower and upper threshold values is increased to a first new value that is greater than a second value of a larger one of the lower and upper threshold values in response to a first control signal indicating the sensor signal is greater than the upper and lower threshold values. A third value of the greater one of the lower and upper threshold values is decreased to a second new value that is less than the value of the larger one of the lower and upper threshold values in response to a second control signal indicating the sensor signal is less than the upper and lower threshold values.
Abstract:
A method and apparatus for secondary side current mode control of a converter are provided. In the method and apparatus, an output voltage of the converter is detected, where the converter has primary and secondary windings that are galvanically isolated in respective primary and secondary sides. A secondary control signal is generated in the secondary side based at least in part on the output voltage and a reference voltage. The secondary control signal is converted to a primary control signal provided in the primary side. The converter is driven in the primary side based at least in part on the primary control signal and a current sense signal indicative of a current flowing through the primary winding.
Abstract:
A controller circuit for an AC-DC converter includes a first controller circuit block configured to drive one or more switches at the primary side of a transformer in the AC-DC converter. A second controller circuit block is configured to sense, at a secondary side of the transformer in said AC-DC converter, a secondary side signal indicative of the output signal from said AC-DC converter. The second controller circuit block generates switching control signals for the first controller circuit block as a function of the secondary side signal. An isolator circuit block between the first controller circuit block and the second controller circuit block includes an isolated transmission channel of the switching control signals from the second controller circuit block to the first controller circuit block.
Abstract:
A method and apparatus for secondary side current mode control of a converter are provided. In the method and apparatus, an output voltage of the converter is detected, where the converter has primary and secondary windings that are galvanically isolated in respective primary and secondary sides. A secondary control signal is generated in the secondary side based at least in part on the output voltage and a reference voltage. The secondary control signal is converted to a primary control signal provided in the primary side. The converter is driven in the primary side based at least in part on the primary control signal and a current sense signal indicative of a current flowing through the primary winding.
Abstract:
A controller for a multiphase converter comprises a first stage controller for producing a first gate drive signal to turn on a first power transistor of a first boost converter; a delay element configured to produce a delayed signal by delaying the first gate drive signal by half a cycle length; a time difference detection element configured to: output a turn on command based on a zero crossing detection (ZCD) signal indicating that one or more zero current conditions of a second boost converter of the multiphase converter are met and the delayed signal; and a second stage controller configured to assert a second gate drive signal to turn on a second power transistor of the second boost converter based on the turn on command.
Abstract:
An electronic device includes a circuit board that manages supply of electricity to the electronic device. The circuit board includes an integrated circuit and an external capacitor coupled to a supply terminal of the circuit board. During a startup operation of the integrated circuit, the integrated circuit supplies a first charging current to charge the capacitor to a supply voltage value. The circuit board includes a boost circuit that receives a portion of the first charging current and outputs a second charging current that augments charging of the capacitor. The second charging current is an amplification of the first charging current. The integrated circuit enables operation of the electronic device after the capacitor is charged to the supply voltage value.
Abstract:
An electronic device includes a circuit board that manages supply of electricity to the electronic device. The circuit board includes an integrated circuit and an external capacitor coupled to a supply terminal of the circuit board. During a startup operation of the integrated circuit, the integrated circuit supplies a first charging current to charge the capacitor to a supply voltage value. The circuit board includes a boost circuit that receives a portion of the first charging current and outputs a second charging current that augments charging of the capacitor. The second charging current is an amplification of the first charging current. The integrated circuit enables operation of the electronic device after the capacitor is charged to the supply voltage value.
Abstract:
An active discharge circuit discharges an X capacitor and includes a sensor circuit that generates a sensor signal indicative of an AC voltage at the X capacitor. A processing unit generates a reset signal as a function of a comparison signal. A comparator circuit generates the comparison signal by comparing the sensor signal with a threshold. A timer circuit sets a discharge enable signal to a first logic level when the timer circuit is reset via a reset signal. The timer circuit determines the time elapsed since the last reset and tests whether the time elapsed exceeds a given timeout value. If the time elapsed exceeds the given timeout value, the timer circuit sets the discharge enable signal to a second logic level. A dynamic threshold generator circuit varies the threshold of the comparator circuit as a function of the sensor signal.