Abstract:
Oil sands may be surface mined and transported to a treatment area or may be treated directly by means of an in situ process of oil sand deposits that are located too deep for strip mining. A bitumen recovery process may be used to extract bitumen from oil sands. Specifically, the bitumen recover process involves a step of treating oil sands with a propylene oxide capped glycol ether described by the structure: RO—(C2H4O)n—CH2CH(CH3)OH wherein R is a linear, branched, or cyclic alkyl, phenyl, alkyl phenyl group and n is 1 to 10.
Abstract:
A process comprising reacting a benzoic acid with a glycol ether in the presence of phosphoric acid to produce a glycol ether ester product having low color, low odor, and low VOC content.
Abstract:
A process comprising reacting a mono- or di-carboxylic acid and/or acid anhydride with a glycol ether in the presence of phosphoric acid to produce a glycol ether ester product having low color and low VOC content.
Abstract:
The hydration of clays and shale in drilling operations may be inhibited by employing an aqueous based drilling fluid comprising a shale hydration inhibition agent having the formula: (Formula I should be inserted here.) wherein R is hydrogen or an alkyl group having 1 to 12 carbons, R1 is an alkylene group having 1 to 12 carbons, and R2 is an alkyl group having 1 to 12 carbons. The shale hydration inhibition agent should be present in the aqueous based drilling fluid in sufficient concentration to reduce the reactivity, such as swelling, of clays and shale when exposed to water-based drilling fluids.
Abstract:
A coalescent consisting essentially of a residue from a process for forming propyleneglycol phenyl ether, the coalescent consisting essentially of 65%-75% by weight, based on the weight of the residue, dipropyleneglycol phenyl ether, 8%-10% by weight, based on the weight of the coalescent, monopropyleneglycol phenyl ether, 4%-6% by weight, based on the weight of the coalescent, tripropyleneglycol phenyl ether, and 0.1%-10% by weight, based on the weight of the coalescent, alkalinity(reported as NaOH) is provided. Also provided is a method for forming certain low-VOC, low cost, coalesced aqueous polymeric dispersions including, as copolymerized units, from 70% to 100% by weight, based on the solids weight of the aqueous polymeric dispersion, vinyl acetate monomer and an aqueous coating composition including the coalesced aqueous polymeric dispersion.
Abstract:
The present invention relates to solvent compositions and processes for inhibiting the generation of peroxide in glycol ether solvents. In one aspect, a solvent composition comprises at least one glycol ether, at least one antioxidant, wherein the at least one antioxidant is selected from the group consisting of L-ascorbic acid-6-hexadecanoate, pentaerythritol tetrakis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate), and mixtures thereof, wherein the amount of the antioxidant in the solvent composition is less than or equal to 1,000 ppm by weight based on the total weight of the solvent composition and a peroxide, wherein the amount of the peroxide in the solvent composition is less than 20 ppm, based on the total weight of the solvent composition.
Abstract:
The present invention relates to azeotropic blends and pseudoazeotropic blends and to coating compositions including such blends. In one aspect, an azeotropic blend or a pseudoazeotropic blend consists essentially of hexamethyldisiloxane and a second component selected from the following: isobutanol, n-propyl acetate, n-butanol, and 1-methoxy-2-propanol.
Abstract:
Glycol ether benzoates, glycol benzoates and methyl benzoate facilitate the dyeing of the meta-aramid article, e.g., fibers, at or near neutral pH. The addition of an anionic surfactant, such as sodium lauryl sulfate, enhances the performance of the benzoates.
Abstract:
The present invention relates to an improved bitumen recovery process from oil sands. The oil sands may be surface mined and transported to a treatment area or may be treated directly by means of an in situ process of oil sand deposits that are located too deep for strip mining. Specifically, the present invention involves the step of treating oil sands with a propylene oxide capped glycol ether described by the structure: RO—(C2H4O)n—CH2CH(CH3)OH wherein R is a linear, branched, or cyclic alkyl, phenyl, alkyl phenyl group and n is 1 to 10.
Abstract:
Glycol ether benzoates, glycol benzoates and methyl benzoate facilitate the dyeing of the meta-aramid article, e.g., fibers, at or near neutral pH. The addition of an anionic surfactant, such as sodium lauryl sulfate, enhances the performance of the benzoates.