AN AQUEOUS SEPARATION PROCESS FOR MULTIPLE POLYMER COMPONENTS

    公开(公告)号:US20240051187A1

    公开(公告)日:2024-02-15

    申请号:US18553590

    申请日:2022-06-17

    Abstract: A process for separating and recovering at least one polymer component from a melt of a multiple number of polymer components including the steps of: (A) shearing a multi-polymer component melt in the presence of a pressurized aqueous solution; wherein the multi-polymer component melt comprises a blend of at least a first polymer component and at least a second polymer component; wherein the multi-polymer component melt has at least two melting temperatures, at least two glass transition temperatures or combinations thereof; wherein the pressurized aqueous solution comprises an aqueous liquid mixture of: (i) water, and (ii) at least one dispersing agent; wherein the shearing of the multi-polymer component melt in contact with the pressurized aqueous solution forms a dispersion, particles, or strands of the at least one first polymer component having an enriched first polymer component concentration; and (B) after the shearing of step (A), isolating the at least first polymer component from the other polymer components of the multi-polymer component melt by separating the dispersion, particles, or strands of the at least one first polymer component having an enriched first polymer component concentration from the water, the at least one dispersing agent, the at least second polymer component, and any remaining thermoplastic polymer resins present in the mixture of the multi-polymer component melt in the pressurized aqueous solution.

    Composition for Odor Suppression
    16.
    发明申请

    公开(公告)号:US20220169839A1

    公开(公告)日:2022-06-02

    申请号:US17434198

    申请日:2020-02-18

    Abstract: The present disclosure provides a composition. In an embodiment, the composition includes an olefin-based polymer and from 0.15 wt % to 15 wt % of an odor suppressant. The odor suppressant includes (i) from 0.05 wt % to 2 wt % of a metal oxide having a band gap greater than 5.0 electron volts (eV), and (ii) from 0.1 wt % to 13 wt % of an acid copolymer. The ratio of metal oxide to acid copolymer is from 1:20 to 1:1. Weight percents are based on the total weight of the composition.

    FUSED FILAMENT FABRICATION MANUFACTURING METHOD AND POLYMER BLEND USED THEREIN

    公开(公告)号:US20210299948A1

    公开(公告)日:2021-09-30

    申请号:US17264737

    申请日:2019-07-12

    Abstract: A method of fused filament fabrication (FFF) additive manufacturing comprises employing a thermoplastic blend comprised of high density polyethylene and a second thermoplastic polymer, wherein the second polymer is a low density polyethylene (LDPE), functionalized polyolefin or combination thereof and the amount of high density polyethylene to the amount of second thermoplastic polymer by weight is a ratio from 1.5/1 to 20/1. LDPE means a polyethylene that have been radically polymerized at high pressure. The method allows for the additive manufacturing article that retains the desirable mechanical properties of HDPE without experiencing the problems inherent in FFF printing of HDPE or use of solid fillers. In a particular embodiment, the additive manufactured article has a continuous phase and the second thermoplastic polymer is present as a discontinuous phase within the additive article manufactured article and the filament used to make the article.

Patent Agency Ranking