Abstract:
The present disclosure provides embodiments of a composition comprising post-consumer recycled resin comprising: at least 50 weight percent polyolefin, having an initial limonene level of at least 5 ppm; virgin ethylene-based polymer; and at least one odor-active zeolite, wherein the odor-active zeolite has an FAU crystal structure, an MFI crystal structure, and/or a beta crystal structure and a Si/Al molar ratio from 1 to 100, wherein the composition has a reduced limonene level of less than 3 ppm. The present disclosure also provides embodiments of a method of reducing taste and/or odor in a post-consumer recycled (PCR) resin-containing composition.
Abstract:
A method of additive manufacturing is comprised of providing a material comprised of a ethyl cellulose polymer having an ethoxy content of 43% to 52% by mass and a plasticizer. The material is heated and dispensed through a nozzle to form an extrudate deposited on a base. The base, nozzle or combination thereof is moved while dispensing the material so that there is horizontal displacement between the base and nozzle in a predetermined pattern to form an initial layer of the material on the base and successive layers of the material are adhered on the initial layer to form an additive manufactured part by repeating the aforementioned steps. The article formed of the ethyl cellulose polymer may be used in many applications such as those related to the pharmaceutical and food industries.
Abstract:
An additive elastomeric manufactured part having an elongation at break of at least 50% may be made by a method comprising the following. A material comprising a prepolymer and filler is first dispensed through a nozzle to form an extrudate deposited on a base. The base, nozzle or combination thereof is moved while dispensing the material so that there is horizontal displacement between the base and nozzle in a predetermined pattern to form an initial layer of the material on the base. Subsequent layers are then formed on the initial layer by repeating the dispensing and movement on top of the initial layer and layers that follow.
Abstract:
A method for separating natural gas liquids (NGLs) from a hydrocarbon gas mixture containing natural gas liquids and methane, comprising the steps of: i) providing a bed of adsorbent selective for NGLs over methane; ii) passing a hydrocarbon gas mixture containing methane and NGL through the bed of adsorbent to at least partially remove NGLs from the gas mixture to produce: (a) NGL-loaded adsorbent and (b) NGL-depleted hydrocarbon gas mixture; iii) recovering the NGL-depleted hydrocarbon gas mixture; iv) regenerating the NGL-loaded adsorbent by at least partially removing NGLs from the adsorbent; and v) sequentially repeating steps (ii) and (iii) using regenerated adsorbent from step (iv).
Abstract:
A method of fabricating a three-dimensional object, the method comprising (a) providing a polymer microfiller composite comprising a molecularly self-assembling (MSA) material and a microfiller dispersed in the MSA material; (b) depositing the polymer microfiller composite; and (c) repeating the depositing step until the three-dimensional object is formed.
Abstract:
The present invention relates to a process for purification of a carbon dioxide feedstock, for example from a production well, which comprises carbon dioxide and gaseous and liquid C1+ hydrocarbons. Specifically, a carbon dioxide feedstream is passed through one or more separation unit wherein each separation unit removes one or more C1+ hydrocarbon from the carbon dioxide feedstream to provide a richer carbon dioxide gas stream. The process comprises one or more separation unit which employs an adsorption media and has an adsorption step and a media regeneration step wherein the regeneration step may be operated as a batch process, a semi-continuous process, or a continuous process. One embodiment of this method provides for the use of a different regenerable adsorbent media in two or more separation units.
Abstract:
Disclosed is an improved process for recovering condensable components from a gas stream, in particular, heavier hydrocarbons from a gas stream. The present process uses solid adsorbent media to remove said heavier hydrocarbons wherein the adsorbent media is regenerated in a continuous fashion in a continuous adsorbent media counter-current regeneration system using a stripping gas to provide a regenerated adsorbent media and a product gas comprising heavier hydrocarbons from a loaded adsorbent media. The improvement is the use of a portion of the product gas from the regeneration unit as the stripping gas.
Abstract:
A method is disclosed for the separation of ethane and heavier hydrocarbons or propane and heavier hydrocarbons from natural gas to provide a methane-rich natural gas stream and less volatile natural gas liquids (NGLs). This method provides for the use of a regenerable adsorbent media which is regenerated by a microwave heating system. Said regeneration step may be operated as a batch process, a semi-continuous process, or a continuous process.
Abstract:
The present invention provides compositions for use as elastomeric roof coatings having excellent infrared (IR) reflectivity which comprise (i) one or more elastomeric copolymer having a measured glass transition temperature (measured Tg) of from −100 to 0° C. and one or more mesoporous filler, preferably a mesoporous filler that is substantially free of organic groups or residues, the mesoporous filler chosen from mesoporous silica, mesoporous aluminosilicates and mesoporous alumina, wherein the composition has a pigment volume concentration (% PVC) of from 0.1 to 15%. Such compositions provide aqueous or solvent borne clearcoats that can go over existing, already painted or colorcoated roof or wall substrates to preserve their finish or appearance.
Abstract:
A process for separating and recovering at least one polymer component from a melt of a multiple number of polymer components including the steps of: (A) shearing a multi-polymer component melt in the presence of a pressurized aqueous solution; wherein the multi-polymer component melt comprises a blend of at least a first polymer component and at least a second polymer component; wherein the multi-polymer component melt has at least two melting temperatures, at least two glass transition temperatures or combinations thereof; wherein the pressurized aqueous solution comprises an aqueous liquid mixture of: (i) water, and (ii) at least one dispersing agent; wherein the shearing of the multi-polymer component melt in contact with the pressurized aqueous solution forms a dispersion, particles, or strands of the at least one first polymer component having an enriched first polymer component concentration; and (B) after the shearing of step (A), isolating the at least first polymer component from the other polymer components of the multi-polymer component melt by separating the dispersion, particles, or strands of the at least one first polymer component having an enriched first polymer component concentration from the water, the at least one dispersing agent, the at least second polymer component, and any remaining thermoplastic polymer resins present in the mixture of the multi-polymer component melt in the pressurized aqueous solution.