Abstract:
An optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes (i) an outer cladding region, (ii) an annular pedestal (or ring) region, (iii) an annular inner trench region, and (iv) an annular outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. In order to suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region. In a preferred embodiment, the fiber is configured so that, at a signal wavelength of approximately 1550 nm, its bend loss is no more than about 0.1 dB/turn at bend radius of 5 mm and is no more than about 0.02 dB/turn at a bend radius of 10 mm. In addition, in one embodiment, the core region also includes an inner core region and an annular outer core (or shelf) region surrounding the inner core region. The outer core region extends radially a distance of less than 9 μm from the fiber axis. In another embodiment, the inner trench region includes an annular inner portion and an annular outer (or step) portion surrounding said inner portion. The refractive index of the step portion is greater than that of the inner portion. In a preferred embodiment, both of the foregoing features of the core region and the inner trench region are incorporated in the fiber. Also described are multi-tube fabrication techniques for making such fibers.
Abstract:
An optical transmission fiber is formed to include a relatively low-index, relatively thin outer cladding layer disposed underneath the protective polymer outer coating. Stray light propagating along an inner cladding layer(s) within the fiber will be refracted into the thin outer cladding (by proper selection of refractive index values). The thin dimension of the outer cladding layer allows for the stray light to “leak” into the outer coating in a controlled, gradual manner so as to minimize heating of the coating associated with the presence of stray light. The inventive fiber may also be bent to assist in the movement of stray light into the coating.
Abstract:
A dispersion compensating fiber and module are described for controlling residual dispersion in a dispersion compensated system. The dispersion compensating fiber is designed with dispersion curve having an inflection point at a wavelength near the optical transmission operating wavelength region. The dispersion curve, having an inflection point near the operating wavelength region, produces a relative dispersion slope that closely matches the relative dispersion slope of the transmission fiber over a relatively wide bandwidth surrounding the operating wavelength region.
Abstract:
The specification describes a technique for drawing circular core multimode optical fiber using twist during draw to increase fiber bandwidth.
Abstract:
Optical fiber bundles having high optical throughput can be produced with relatively high yield if gaps between fibers are eliminated by application of a particle-containing glass precursor material, exemplarily fumed silica in an aqueous medium. Manufacture of optical fiber bundles that comprise two or more fibers that each comprise a substantially planar surface (with the planar surfaces facing each other) is improved by application of a particle-free glass precursor material, e.g., partially hydrolysed tetramethyl orthosilicate, to the fiber bundle. After drying of the applied glass precursor material the fiber bundle is heated to fuse the fibers together.
Abstract:
A cladding-pumped fiber structure is disclosed in which mode mixing of pump light injected into the fiber is induced by index modulation. In one embodiment, the index modulation is created by a stress-inducing region disposed in the cladding which simultaneously maintains the polarization within the core to produce a polarization-maintaining fiber useful for multi-mode and laser applications.
Abstract:
Multistage Er-doped fiber amplifiers (EDFAs) are disclosed. They comprise a first stage that comprises Er and Al, and further comprise a second stage that comprises Er and a further rare earth element, exemplary Yb. Such multistage EDFAs can have advantageous characteristics e.g., a relatively wide flat gain region (e.g. 1544-1562 nm), and relatively high output power, without significant degradation of the noise figure. Exemplary, the amplifiers are used in WDM systems and in analog CATV systems.
Abstract:
An optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes (i) an outer cladding region, (ii) an annular pedestal (or ring) region, (iii) an annular inner trench region, and (iv) an annular outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. In order to suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region. In a preferred embodiment, the fiber is configured so that, at a signal wavelength of approximately 1550 nm, its bend loss is no more than about 0.1 dB/turn at bend radius of 5 mm and is no more than about 0.02 dB/turn at a bend radius of 10 mm. In addition, in one embodiment, the core region also includes an inner core region and an annular outer core (or shelf) region surrounding the inner core region. The outer core region extends radially a distance of less than 9 μm from the fiber axis. In another embodiment, the inner trench region includes an annular inner portion and an annular outer (or step) portion surrounding said inner portion. The refractive index of the step portion is greater than that of the inner portion. In a preferred embodiment, both of the foregoing features of the core region and the inner trench region are incorporated in the fiber. Also described are multi-tube fabrication techniques for making such fibers.
Abstract:
An all-fiber mode-field resizer comprises a first optical fiber configured to propagate signal light in a predetermined transverse mode along a longitudinal axis from a first input/output (I/O) port to a second I/O port. The first fiber is configured to have a first effective mode-field area and a first core V-parameter proximate the first I/O port and to have a second effective mode-field area and a second core V-parameter proximate the second I/O port. The second mode-field area is greater than the first mode-field area, and the second V-parameter is less than the first V-parameter. In one embodiment, the second V-parameter is less than approximately 1.3, and preferably less than 1.0. In another embodiment, the first V-parameter is greater than approximately 1.8. In yet another embodiment, our mode-field resizer is incorporated into a tapered fiber bundle.
Abstract:
A fiber-optic WDM ring carries communication traffic among a plurality of nodes, each node associated with respective subscriber premises. Remote gain is provided in at least one link of the ring. In specific embodiments of the invention, the remote gain is applied preferentially to those wavelength channels most in need of amplification. In specific embodiments of the invention, the remote gain is Raman gain.