摘要:
An optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes (i) an outer cladding region, (ii) an annular pedestal (or ring) region, (iii) an annular inner trench region, and (iv) an annular outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. In order to suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region. In a preferred embodiment, the fiber is configured so that, at a signal wavelength of approximately 1550 nm, its bend loss is no more than about 0.1 dB/turn at bend radius of 5 mm and is no more than about 0.02 dB/turn at a bend radius of 10 mm. In addition, in one embodiment, the core region also includes an inner core region and an annular outer core (or shelf) region surrounding the inner core region. The outer core region extends radially a distance of less than 9 μm from the fiber axis. In another embodiment, the inner trench region includes an annular inner portion and an annular outer (or step) portion surrounding said inner portion. The refractive index of the step portion is greater than that of the inner portion. In a preferred embodiment, both of the foregoing features of the core region and the inner trench region are incorporated in the fiber. Also described are multi-tube fabrication techniques for making such fibers.
摘要:
An optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes an outer cladding region, a pedestal region, an inner trench region, and an outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. To suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region. Also described are multi-tube fabrication techniques for making such fibers as well as single-pass/double-pass fabrication techniques for making the trench regions of such fibers.
摘要:
Described are multi-tube fabrication techniques for making an optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes (i) an outer cladding region, (ii) an annular pedestal (or ring) region, (iii) an annular inner trench region, and (iv) an annular outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. In order to suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region.
摘要:
An optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes (i) an outer cladding region, (ii) an annular pedestal (or ring) region, (iii) an annular inner trench region, and (iv) an annular outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. In order to suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region. In a preferred embodiment, the fiber is configured so that, at a signal wavelength of approximately 1550 nm, its bend loss is no more than about 0.1 dB/turn at bend radius of 5 mm and is no more than about 0.02 dB/turn at a bend radius of 10 mm. In addition, in one embodiment, the core region also includes an inner core region and an annular outer core (or shelf) region surrounding the inner core region. The outer core region extends radially a distance of less than 9 μm from the fiber axis. In another embodiment, the inner trench region includes an annular inner portion and an annular outer (or step) portion surrounding said inner portion. The refractive index of the step portion is greater than that of the inner portion. In a preferred embodiment, both of the foregoing features of the core region and the inner trench region are incorporated in the fiber. Also described are multi-tube fabrication techniques for making such fibers.
摘要:
Described is a method of fabricating an optical fiber preform that includes a deep index trench comprising a shallower outer trench portion formed on a substrate tube and a deeper inner trench portion formed on the shallower outer trench portion. Each of the shallower outer trench and deeper inner trench portions comprises multiple silica layers. The method comprises the steps of: (1) forming each layer of the shallower outer trench portion in a single-pass deposition of a F-containing silica layer; and (2) forming each layer of the deeper inner portion in a double-pass deposition in which, in a first pass, a layer of silica soot is deposited and then, in a second pass, the soot is sintered in the presence of SiF4.
摘要:
An optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes (i) an outer cladding region, (ii) an annular pedestal (or ring) region, (iii) an annular inner trench region, and (iv) an annular outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. In order to suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region. In a preferred embodiment, the fiber is configured so that, at a signal wavelength of approximately 1550 nm, its bend loss is no more than about 0.1 dB/turn at bend radius of 5 mm and is no more than about 0.02 dB/turn at a bend radius of 10 mm. In addition, in one embodiment, the core region also includes an inner core region and an annular outer core (or shelf) region surrounding the inner core region. The outer core region extends radially a distance of less than 9 μm from the fiber axis. In another embodiment, the inner trench region includes an annular inner portion and an annular outer (or step) portion surrounding said inner portion. The refractive index of the step portion is greater than that of the inner portion. In a preferred embodiment, both of the foregoing features of the core region and the inner trench region are incorporated in the fiber. Also described are multi-tube fabrication techniques for making such fibers.
摘要:
An optical transmission fiber is formed to include a relatively low-index, relatively thin outer cladding layer disposed underneath the protective polymer outer coating. Stray light propagating along an inner cladding layer(s) within the fiber will be refracted into the thin outer cladding (by proper selection of refractive index values). The thin dimension of the outer cladding layer allows for the stray light to “leak” into the outer coating in a controlled, gradual manner so as to minimize heating of the coating associated with the presence of stray light. The inventive fiber may also be bent to assist in the movement of stray light into the coating.
摘要:
An optical transmission fiber is formed to include a relatively low-index, relatively thin outer cladding layer disposed underneath the protective polymer outer coating. Stray light propagating along an inner cladding layer(s) within the fiber will be refracted into the thin outer cladding (by proper selection of refractive index values). The thin dimension of the outer cladding layer allows for the stray light to “leak” into the outer coating in a controlled, gradual manner so as to minimize heating of the coating associated with the presence of stray light. The inventive fiber may also be bent to assist in the movement of stray light into the coating.
摘要:
Applicants have discovered an apparatus and method effective for use in rendering an optical fiber resistant to losses caused by high-radiation environments such as in outerspace. The apparatus comprises an optical fiber, a housing surrounding the optical fiber defining an enclosed space between the exterior surface of the fiber and the housing, and a concentration of deuterium or hydrogen gases disposed within the enclosed space.
摘要:
Our method of making high bandwidth silica-based multimode optical fiber comprises provision of a non-circular preform, and drawing fiber of chiral structure from the preform. The non-circular preform can be made by maintaining the inside of the tubular preform under reduced pressure during at least part of the collapse, resulting in a non-circular core and cladding. It can also be made by removal (e.g., by grinding or plasma etching) of appropriate portions of the preform, resulting in a circular core and non-circular cladding. In the latter case, fiber is drawn at a relatively high temperature such that, due to surface tension, the cladding assumes substantially circular shape and the core assumes a non-circular shape. The chiral structure is imposed on the fiber in any appropriate way, e.g., by twisting during fiber drawing the fiber alternately in clockwise and couterclockwise sense relative to the preform.