摘要:
The invention provides a method and system for continuous optimization of a data center. The method includes monitoring loads of storage modules, server modules and switch modules in the data center, detecting an overload condition upon a load exceeding a load threshold, combining server and storage virtualization to address storage overloads by planning allocation migration between the storage modules, to address server overloads by planning allocation migration between the server modules, to address switch overloads by planning allocation migration mix between server modules and storage modules for overload reduction, and orchestrating the planned allocation migration to reduce the overload condition in the data center.
摘要:
Embodiments of the present invention provide an approach for adapting an information extraction middleware for a clustered computing environment (e.g., a cloud environment) by creating and managing a set of statistical models generated from performance statistics of operating devices within the clustered computing environment. This approach takes into account the required accuracy in modeling, including computation cost of modeling, to pick the best modeling solution at a given point in time. When higher accuracy is desired (e.g., nearing workload saturation), the approach adapts to use an appropriate modeling algorithm. Adapting statistical models to the data characteristics ensures optimal accuracy with minimal computation time and resources for modeling. This approach provides intelligent selective refinement of models using accuracy-based and operating probability-based triggers to optimize the clustered computing environment, i.e., maximize accuracy and minimize computation time.
摘要:
The present invention proactively identifies hotspots in a cloud computing environment through cloud resource usage models that use workload parameters as inputs. In some embodiments the cloud resource usage models are based upon performance data from cloud resources and time series based workload trend models. Hotspots may occur and can be detected at any layer of the cloud computing environment, including the server, storage, and network level. In a typical embodiment, parameters for a workload are identified in the cloud computing environment and inputted into a cloud resource usage model. The model is run with the inputted workload parameters to identify potential hotspots, and resources are then provisioned for the workload so as to avoid these hotspots.
摘要:
Embodiments of the present invention provide lifecycle storage management for data within a Cloud computing environment. Specifically, a set of policies can be defined that allow for automatic valuation of the data and migration of the data between a set of storage tiers. Before a policy set is deployed, it can be assessed to determine effects it will have on cost, performance, and data location. Based on data characteristics and access patterns, a set of policy recommendations can be provided that predict the value of the data over time, and offer an improved migration strategy for moving the data between the set of storage tiers as the value of the data changes.
摘要:
Embodiments discussed in this disclosure provide an integrated provisioning framework that automates the process of provisioning storage resources, end-to-end, for an enterprise storage cloud environment. Such embodiments configure and orchestrate the deployment of a user's workload and, at the same time, provide optimization across a multitude of storage cloud resources. Along these lines, input is received in the form of workload requirements and configuration information for available system resources. Based on the input, a set (at least one) of storage cloud configuration plans is developed that satisfy the workload requirements. A set of scripts is then generated that orchestrate the deployment and configuration of different software and hardware components based on the plans.
摘要:
Server consolidation using virtual machine resource tradeoffs, is provided. One implementation involves assigning a virtual machine to a target physical server based on a plurality of virtualization parameters for maximizing utility of a plurality of virtual machines and physical servers. The assigning performs resource allocation for the virtual machine based on capabilities of the target physical server and a plurality of virtual machine resource requirements. Virtualization parameters include a reservation parameter (min) representing a minimum resources required for a VM, a limit parameter (max) representing a maximum resources allowable for the VM, and a weight parameter (shares) representing a share of spare resources for the VM.
摘要:
The invention provides a method and system for continuous optimization of a data center. The method includes monitoring loads of storage modules, server modules and switch modules in the data center, detecting an overload condition upon a load exceeding a load threshold, combining server and storage virtualization to address storage overloads by planning allocation migration between the storage modules, to address server overloads by planning allocation migration between the server modules, to address switch overloads by planning allocation migration mix between server modules and storage modules for overload reduction, and orchestrating the planned allocation migration to reduce the overload condition in the data center.
摘要:
An apparatus, system, and method are disclosed for monitoring computer system components in large or complex systems. The apparatus includes an identifier module for associating at least one visual identifier with a computer system component. A function module associates one or more control functions with the visual identifier. A presentation module selectively displays the at least one identifier for the computer system component within a present view of a user interface. A monitoring module monitors the computer system component associated with the at least one identifier and modifies the identifier in response to a change in operational status for the computer system component.
摘要:
Embodiments of the present invention provide performance isolation for storage clouds. Under one embodiment, workloads across a storage cloud architecture are grouped into clusters based on administrator or system input. A performance isolation domain is then created for each of the clusters, with each of the performance isolation domains comprising a set of data stores associated with a set of storage subsystems and a set of data paths that connect the set of data stores to a set of clients. Thereafter, performance isolation is provided among a set of layers of the performance isolation domains. Such performance isolation is provided by (among other things): pooling data stores from separate performance isolation domains into separate pools; assigning the pools to device adapters, RAID controller, and the set of storage subsystems; preventing workloads on the device adapters from exceeding capacities of the device adapters; mapping the set of data stores to a set of Input/Output (I/O) servers based on an I/O capacity and I/O load of the set of I/O servers; and/or pairing ports of the set of I/O servers with ports of the set of storage subsystems, the pairing being based upon availability, connectivity, I/O load, and I/O capacity.
摘要:
Embodiments for efficiently computing complex statistics from historical time series data are provided. A hierarchical summarization method includes receiving at least one stream of data and creating data blocks from the at least one stream of data. In another embodiment, a method for computing statistics for historical data includes accessing at least one online stream of historical data, the online stream of historical data including metadata, and creating data blocks from the at least one online stream of historical data. Each data block includes a pair of timestamps indicating a sampling start time and a sampling end time, a number of data samples spanned by the data block, a SUM(X) statistic, a SUM(XX) statistic, and a SUM(XY) statistic computed for the data samples spanned by the data block. Other methods are also presented, such as methods for efficiently and accurately calculating statistical queries regarding historical data for arbitrary time ranges, among others.