Abstract:
A system for controlling a power amplifier using a dual feedback translation loop uses the output of the translation loop during a first time period where a power amplifier has insufficient power to lock the loop and uses the output of the power amplifier to lock the translation loop only after the power amplifier provides sufficient power. By using a first feedback loop taken from the output of the translation loop and a second feedback loop taken from the output of the power amplifier, the translation loop can lock to the output of the translation loop until the power output of the power amplifier is sufficient to lock the translation loop. A pair of phase detectors and corresponding charge pumps associated with each of the feedback loops provides a smooth switching function while transitioning from the first loop to the second loop.
Abstract:
Systems and methods are provided for detecting forward power sent to an antenna and reflected power reflected back from the antenna. Embodiments of the present invention provide systems and methods for measuring forward and reflected power and controlling the amount of power supplied to the antenna responsive to these measurements. Embodiments of the present invention enable the power sent to the antenna to be dynamically altered when antenna impendence changes (e.g., when the antenna gets too close to another object).
Abstract:
A system for transmitting and receiving data is provided. The system includes a direct-conversion receiver that receives a signal modulated on a carrier frequency signal. The direct-conversion receiver includes one or more subharmonic local oscillator mixers. A local oscillator is connected to the direct conversion receiver, and generates a signal having a frequency equal to a subharmonic of the carrier frequency signal. A transmitter is connected to the local oscillator, which uses the local oscillator signal to transmit outgoing data.
Abstract:
A controller enables the integration of a DC-DC converter in an amplitude modulation power control loop in a mobile handset. The controller includes an input conditioner and an event sensor. The input conditioner uses a peak detector to track the output of a regulator and responds to available baseband input signals. The event sensor controls a switch that connects the DC-DC converter to a battery in response to a bypass event. The controller bypasses the DC-DC-converter when a transmitter is not enabled. The DC-DC converter is enabled prior to a transmission burst. A target voltage is determined from a series of detected peak voltages from the output of the regulator. The controller commands the DC-DC converter to transition to the target voltage until the end of a transmission burst.
Abstract:
A system for saturation detection, correction and recovery in a power amplifier includes a power amplifier, a closed power control loop configured to develop a power control signal (VPC), and power control circuitry configured to reduce the power control signal if the power amplifier is operating in a saturation mode.
Abstract:
A supply voltage controlled power amplifier includes a power amplifier, a closed power control loop configured to generate a power control signal, and a voltage regulator coupled to the power control loop, the voltage regulator including a first regulator stage, a second regulator stage, and a peak detector, wherein an output of the second regulator stage is applied as a feedback signal to the first regulator stage and wherein an output of the first regulator stage is decreased to a level consistent with an output of the power amplifier and an additional operating buffer amount.
Abstract:
A variable gain frequency multiplier comprises a multiplier circuit and a control circuit configured to receive a power control signal, the power control signal being proportional to a power output signal.
Abstract:
A low noise mixer comprises a first mixer core configured to receive a radio frequency (RF) input signal having an RF frequency, and a first local oscillator signal, wherein the first local oscillator signal is at a frequency that is nominally twice the frequency of the RF frequency, the first mixer core configured to switch the RF input signal to at least one secondary mixer core at a frequency that coincides with the frequency of the first local oscillator signal, the at least one secondary mixer core configured to receive the switched RF input signal and a second local oscillator signal, where the second local oscillator signal is at the same nominal frequency as the RF input signal, and wherein switching the RF input signal at the frequency of the first local oscillator signal substantially eliminates flicker noise associated with the down-conversion process.
Abstract:
A system for saturation detection and compensation in a power amplifier includes a power amplifier, a closed power control loop configured to develop a power control signal (VPC), a comparator configured to receive the power control signal and a reference signal, the comparator also configured to determine whether the power amplifier is operating in a saturation mode, and power control circuitry configured to reduce the power control signal if the power amplifier is operating in a saturation mode.
Abstract:
A single continuous closed-loop power control feedback system provides seamless power control for a power amplifier and also enables an AM signal to be injected into the power amplifier through the power amplifiers' control port. The AM signal is developed by an I/Q modulator and supplied to a comparator located in the power control loop. By using leakage from the power amplifier as feedback to a phase locked loop during initial power amplifier power ramp-up, the single continuous closed-loop power control system provides continuous feedback to the phase locked loop during the entire power amplification ramp-up period and eliminates the need for multiple feedback loops.