Abstract:
A method is disclosed for performing dual mode image rejection calibration in a receiver. A first image correction factor is acquired (1302) for use in a receiver system (15) using a first known signal associated with a first signal band during a startup mode. The first image correction factor is adjusted incrementally (1310) during a normal operation mode. A radio frequency (RF) signal associated with the first signal band is received (1324) using the first image correction factor during the normal operation mode.
Abstract:
In one embodiment, the present invention includes a capacitor array that may provide a selected capacitance to a digitally controlled crystal oscillator (DCXO). The array may include multiple sections each having at least one array portion, where each section is to receive different significant portions of a digital control value. The different sections may have different coding schemes. Other embodiments are described and claimed.
Abstract:
A wireless communication receiver is disclosed that operates in a test mode to determine image correction information that is used to suppress undesired image signals when the receiver switches to a normal operational mode. In one embodiment, the receiver includes a frequency synthesizer coupled by a quadrature divider to an in-phase (I) mixer and a quadrature mixer. The mixers are coupled by respective analog to digital converters (ADCs) to respective I and Q channel inputs of a digital signal processor (DSP). In the test mode, a test tone is provided to the mixer inputs. The test tone is divided down further and provided to clock the frequency synthesizer, the ADCs and the DSP. This configuration locks together the mixers, frequency synthesizer, ADCs and DSP ratiometrically in frequency during the test mode while image correction information is being determined. When the receiver switches to a normal operating mode, the frequency synthesizer, ADCs and DSP are clocked by a main clock signal instead of the divided down test tone, and the test tone is removed from the mixers.
Abstract:
In one embodiment, the present invention includes a frequency divider that has an I channel to provide an I channel phase; and a Q channel to provide a Q channel phase, in which the I and the Q channels are mirrored with respect to an axis therebetween. The axis may also be substantially coincident with a center axis of a device incorporating the frequency divider, such as a transceiver.
Abstract:
A bias system is disclosed including a calibration bus to which a controller, a reference bias source, a master bias source, and first and second slave bias sources are coupled. The controller varies a control code sent over the calibration bus to the master bias source until a particular control code is found that causes the bias signal of the master bias source to equal a desired bias value which is provided by the reference bias source. The controller then sends the particular control code to the first and second slave bias sources to cause the first and second slave bias sources to generate a bias signal having the same desired bias value as the master bias source. Isolation between load circuits coupled to the first and second bias sources is thus enhanced while providing low noise, stable operation
Abstract:
A wireless communication device is disclosed wherein the voltage swing of a local oscillator (LO) signal is controlled to prevent overstressing semiconductor devices in a mixer to which the LO signal is supplied. A quadrature divider supplies the LO signal to the mixer. Digital calibration methodology controls the current that the quadrature divider draws from a power supply to set the voltage swing of the LO signal that the quadrature divider generates.
Abstract:
A wireless communication device is disclosed wherein the voltage swing of a local oscillator (LO) signal is controlled to prevent overstressing semiconductor devices in a mixer to which the LO signal is supplied. A quadrature divider supplies the LO signal to the mixer. Digital calibration methodology controls the current that the quadrature divider draws from a power supply to set the voltage swing of the LO signal that the quadrature divider generates.
Abstract:
A wireless communication receiver is disclosed that operates in a test mode to determine image correction information that is used to suppress undesired image signals when the receiver switches to a normal operational mode. In one embodiment, the receiver includes a frequency synthesizer coupled by a quadrature divider to an in-phase (I) mixer and a quadrature mixer. The mixers are coupled by respective analog to digital converters (ADCs) to respective I and Q channel inputs of a digital signal processor (DSP). In the test mode, a test tone is provided to the mixer inputs. The test tone is divided down further and provided to clock the frequency synthesizer, the ADCs and the DSP. This configuration locks together the mixers, frequency synthesizer, ADCs and DSP ratiometrically in frequency during the test mode while image correction information is being determined. When the receiver switches to a normal operating mode, the frequency synthesizer, ADCs and DSP are clocked by a main clock signal instead of the divided down test tone, and the test tone is removed from the mixers.
Abstract:
A chopped intermediate frequency (IF) wireless receiver is disclosed. The wireless receiver includes a local oscillator (LO), a first and a second mixers, an LO frequency control module, an IF filter, a digital down converter and a down conversion controller. The LO provides a local oscillating signal to the first and second mixers. The first and second mixers converts a received radio frequency signal to an in-phase IF signal and a quadrature IF signal, respectively. The LO frequency control module alternately down converts a channel frequency by changing an oscillation frequency of the LO. Coupled to the digital down converter, the down conversion controller adjusts a complex sine wave within the digital down converter while the in-phase IF signal and the quadrature IF signal are being down-converted by the digital down converter to a baseband signal.
Abstract:
A wireless communication device is disclosed wherein isolation buffers couple to respective active circuits or stages of the device to convey test information regarding such active circuits to a test data line from which status information may be collected. The communication device operates in two modes, namely a normal operational mode wherein the isolation buffers effectively short spurious emissions from the active circuits to a ground, and a test mode wherein the isolation-buffers may convey test information from a selected active circuit to the test data line. The isolation buffers prevent spurious emissions from escaping the active circuits to which they are coupled and prevent spurious emissions from traveling from active circuit to active circuit over the test data line throughout the wireless device.