Abstract:
This invention relates to metallocene compounds having a group substituted at the 3 position of at least one cyclopentadienyl ring represented by the formula —CH2—SiR′3 or —CH2—CR′3 and R′ is a C1 to C20 substituted or unsubstituted hydrocarbyl.
Abstract:
This invention relates to inventive ethylene-based copolymers comprising 75.0 wt % to 99.5 wt % of ethylene-derived units and 0.5 wt % to 25.0 wt % of C3 to C20 olefin derived units; the inventive ethylene-based copolymer having: a density in the range of from 0.900 to less than 0.940 g/cm3; a g′(vis) of less than 0.80; a melt index, I2, of from 0.25 to 1.5 g/10 min.; a Mw/Mn within a range from 3.0 to 6.0, and Mz/Mn greater than 8.0; and an absence of a local minimum loss angle at a complex modulus, G*, of 1.00×104 to 3.00×104 Pa.
Abstract:
This invention relates to a process for polymerizing olefins in which the amount of trimethylaluminum in a methylalumoxane solution is adjusted to be from 1 to 25 mol %, prior to use as an activator, where the mol % trimethylaluminum is determined by 1H NMR of the solution prior to combination with any support. This invention also relates to a process for polymerizing olefins in which the amount of an unknown species present in a methylalumoxane solution is adjusted to be from 0.10 to 0.65 integration units prior to use as an activator, where the amount of the unknown species is determined by the 1H NMR spectra of the solution performed prior to combination with any support. Preferably, the methylalumoxane solution is present in a catalyst system also comprising a metallocene transition metal compound.
Abstract translation:本发明涉及一种聚合烯烃的方法,其中在用作活化剂之前,将甲基铝氧烷溶液中的三甲基铝的量调节至1至25mol%,其中通过溶液的1 H NMR确定摩尔%的三甲基铝 在与任何支持组合之前。 本发明还涉及一种聚合烯烃的方法,其中存在于甲基铝氧烷溶液中的未知物质的量在使用前调节为0.10至0.65个整合单元作为活化剂,其中未知物质的量由 在与任何载体组合之前进行的溶液的1 H NMR光谱。 优选地,甲基铝氧烷溶液存在于还包含茂金属过渡金属化合物的催化剂体系中。
Abstract:
The present disclosure generally relates to catalyst systems, polyethylene compositions, and uses of such compositions in, e.g., films. In an embodiment is provided a film that includes a polyethylene composition, comprising: ethylene and a C3-C40 olefin comonomer, the polyethylene composition having at least 75 wt % ethylene content and from 0 wt % to 25 wt % of a C3-C40 olefin comonomer content based upon the total weight of the composition as determined by GPC-IR5-LS-VIS, the film having: an average of MD and TD 1% secant modulus of 42,000 psi or greater as determined by ASTM D-882, and a Dart Drop Impact of greater than 400 g/mil, as determined by ASTM D1709. In another embodiment is provided a process for producing a polyethylene composition, comprising: introducing, under first polymerization conditions, ethylene and a C3-C40 alpha-olefin to a catalyst system in a reactor, the catalyst system comprising a first catalyst compound, a second catalyst compound, and an activator; and forming a polyethylene composition.
Abstract:
The present disclosure generally relates to catalyst systems, polyethylene compositions, and uses of such compositions in, e.g., films. In an embodiment is provided a film that includes a polyethylene composition, comprising: ethylene and a C3-C40 olefin comonomer, the polyethylene composition having at least 65 wt % ethylene content and from 0 wt % to 35 wt % of a C3-C40 olefin comonomer content based upon the total weight of the composition, the film having: an average of MD and TD 1% secant modulus of 43,000 psi or greater, and a Dart Drop Impact Strength of greater than 500 g/mil. In another embodiment is provided a process for producing a polyethylene composition that includes introducing ethylene and a C3-C40 alpha-olefin to a catalyst system, the catalyst system comprising a first catalyst compound, a second catalyst compound, and an activator; and forming a polyethylene composition.
Abstract:
In some embodiments, the present disclosure provides a composition comprising 1) about 97.5 wt % to about 99.9 wt % of a first polyethylene having a density of about 0.91 g/cm3 to about 0.94 g/cm3, and a melt strength of about 10 mN or greater; and 2) about 0.1 wt % to about 2.5 wt % of a second polyethylene having an Mw of about 500,000 g/mol or more. In some embodiments, the composition is a film. In some embodiments, the present disclosure provides a method of making a composition comprising blending a first polyethylene of any embodiment described herein and a second polyethylene of any embodiment described herein.
Abstract:
The present disclosure provides films made of polyethylene (PE) compositions. In at least one embodiment, a film includes a polyethylene composition, comprising: ethylene content and from 0 to 25 mol % of C3-C40 olefin comonomer content, based upon the total weight of the polyethylene composition, the polyethylene composition having a total internal plus terminal unsaturation greater than 0.7 unsaturations per 1000 carbon atoms, the film having: an Elmendorf Tear value in the machine direction of from 10 g/mil to 300 g/mil, and a Dart Drop Impact of from 100 g/mil to 800 g/mil. In at least one embodiment, the present disclosure provides for processes to make a film.
Abstract:
This invention relates to a supported catalyst system and process for use thereof. In particular, the catalyst system includes bridged hafnium metallocene compound, an unbridged metallocene compound, a support material and an activator. The catalyst system may be used for preparing polyolefins.
Abstract:
This invention relates to metallocene compounds having a group substituted at the 3 position of at least one cyclopentadienyl ring represented by the formula —CH2—SiR′3 or —CH2—CR′3 and R′ is a C1 to C20 substituted or unsubstituted hydrocarbyl.
Abstract:
This invention relates to a supported catalyst system and process for use thereof. In particular, the catalyst system includes bridged hafnium metallocene compound, an unbridged metallocene compound, a support material and an activator. The catalyst system may be used for preparing polyolefins.