Abstract:
A dynamic resource allocating apparatus of a first base station that manages a first cell in a cellular communication system including the first cell and a plurality of cells adjacent to the first cell determines time resource division vector in which one time resource division period is formed of a plurality of time division intervals and calculates time resource division vector for maximizing utilities of user terminals in a set up objective function to update the time resource division vector. Among the plurality of time division intervals, a first time division interval is operated by a time resource reuse coefficient 1 for user terminals positioned in center regions of a first cell and a plurality of adjacent cells, and the remaining time division intervals excluding the first time division interval are operated by a time resource reuse coefficient n for user terminals positioned at edges of the first cell and the plurality of adjacent cells.
Abstract:
Disclosed are various methods for transmitting or receiving data or control information having high reliability conditions. A method for operating a terminal which transmits uplink control information (UCI) includes: a step of generating UCI; a step of comparing the priority of an uplink (UL) control channel for the transmission of the UCI with the priority of a UL data channel when some symbols of the UL control channel and the UL data channel overlap; and a step of selecting the UL channel having a higher priority among the UL control channel and the UL data channel, and transmitting the UCI to a base station through the selected UL channel.
Abstract:
Disclosed are methods and apparatuses for transmitting and receiving data channels in a communication system. An operation method of a terminal in a communication system may comprise receiving, from a base station, resource allocation information of a plurality of physical uplink shared channels (PUSCHs) used for repetitive transmission of a same transport block (TB); identifying a position of each of the plurality of PUSCHs in a time domain based on the resource allocation information; and repeatedly transmitting the same TB to the base station at the position of each of the plurality of PUSCHs. Therefore, performance of the communication system can be improved.
Abstract:
A method and an apparatus for providing a managed service in a wireless communication system are provided. A base station receives a low-level network access mode or a high-level network access mode from a terminal, and determines a limitation or compensation corresponding to an access mode. Further, the base station provides the managed service to the terminal based on the access mode received from the terminal.
Abstract:
A resource allocation apparatus of a cellular communication system including a plurality of cells divides an entire frequency band into a first frequency band to allocate to a cell central area and a second frequency band to allocate to a cell boundary area, divides the second frequency band into a plurality of subbands, allocates the first frequency band or the second frequency band to a terminal within each cell, and adjusts adaptively a size of the first frequency band or the second frequency band according to load distribution information of each cell. The plurality of cells use commonly the first frequency band and the second frequency band is operated with a resource pool method.
Abstract:
An apparatus for allocating resources in a cellular communication system including a plurality of cells divides time resources of one period into a plurality of time division intervals, allocates one time division interval of the plurality of time division intervals for user terminals in a cell edge region, and controls at least one of a magnitude of one period and a magnitude of the plurality of time division intervals in accordance with distributions and load distributions of user terminals of the plurality of cells.
Abstract:
A method of a first base station may comprise: determining, by a MT of the first base station, whether there is a terminal connected to a BSU of the first base station, when a power-off condition is satisfied in the BSU; instructing, by the MT, the terminal, which is connected to the BSU, to be handed over to a second base station, when there is a terminal connected to the BSU; instructing, by the MT, the BSU to power off the BSU, when the handover of the terminal, which is connected to the BSU, is completed; and transmitting, by the MT, a first message, which indicates a power-off state of the first base station, to the second base station, when the BSU is powered off.
Abstract:
An operation method of a terminal including a first relay and a second relay, in a communication system, may include: measuring, by the first relay, a first received signal quality of a first base station connected to the first relay; measuring, by the second relay, a second received signal quality of a second base station connected to the second relay; transmitting, by the first relay, a first PDU to the first base station based on the first received signal quality and the second received signal quality through a first bearer established in the first relay; and transmitting, by the second relay, a second PDU to the second base station based on the first received signal quality and the second received signal quality through a second bearer established in the second relay.
Abstract:
An operation method performed by a remote terminal in a communication system includes: receiving a discovery signal from each of one or more neighboring terminals; performing a measurement operation on the discovery signal; determining at least one candidate terminal from among the one or more neighboring terminals based on a result of the measurement operation; selecting a relay terminal within the at least one candidate terminal; and performing a sidelink setup procedure with the relay terminal.
Abstract:
Disclosed are a method and an apparatus for configuring a path in a communication system including an Xhaul network. A method for changing a path, performed by a first XDU, may comprise receiving from the XCU a path setup request message requesting to change a first path between the second XDU and the third XDU to a second path between the first XDU and the third XDU; receiving an SN status transfer message including an SN of data for the third XDU from the second XDU belonging to the first path, when the path setup request message is received; receiving from the second XDU the data corresponding to the SN indicated by the SN status transfer message; configuring the second path with the third XDU; and transmitting the data received from the second XDU to the third XDU through the second path.