Abstract:
Provided is an X-ray tube which includes a first electrode, a second electrode spaced apart from the first electrode, a target disposed in a lower portion of the second electrode, an emitter on the first electrode, a third electrode which is positioned between the first electrode and the second electrode and includes an opening at a position perpendicularly corresponding to the emitter, and a spacer provided on the third electrode and surrounding the second electrode. The spacer includes a first section located adjacent to the third electrode and a second section disposed on the first section. The spacer includes a ceramic insulator and conductive dopants dispersed within the ceramic insulator. A concentration of the conductive dopants in the first section of the spacer is greater than a concentration of the conductive dopants in the second section. The third electrode is in contact with the first section of the spacer.
Abstract:
Provided is an X-ray tube. The X-ray tube includes a cathode electrode, an anode electrode vertically spaced apart from the cathode electrode, an emitter on the cathode electrode, a gate electrode disposed between the cathode electrode and the anode electrode, the gate electrode including an opening at a position corresponding to the emitter, and a spacer provided between the gate electrode and the anode electrode. The spacer includes an insulator and conductive dopants doped in the insulator.
Abstract:
Provided is an X-ray imaging device and a driving method thereof, the X-ray imaging device including an electron beam generation unit including a plurality of nano-emitters and a cathode, a first focusing electrode configured to focus an electron beam emitted from the electron beam generation unit, a deflector configured to deflect the electron beam focused by the first focusing electrode, a limited electrode configured to limit traveling of the electron beam deflected by the deflector, and an anode configured to be irradiated with the electron beam to emit an X-ray, wherein the limited electrode includes a limited aperture which the electron beam pass.
Abstract:
Disclosed is a field emission apparatus. The apparatus comprises a cathode electrode and an anode electrode spaced apart from each other, an emitter on the cathode electrode, a gate electrode between the cathode and anode electrodes and including at least one gate aperture overlapping the emitter, and an electron transmissive sheet on the gate electrode and including a plurality of fine openings overlapping the gate aperture.
Abstract:
Provided is a method of driving multi electrical field emission devices. The method includes: respectively connecting first current control circuit devices for current path formation to a plurality of electric field emission devices; commonly connecting a second current control circuit device to the first current control circuit devices to commonly control the first current control circuit devices; and driving the first current control circuit devices at different timings when the second current control circuit device is driven.
Abstract:
A method and apparatus for generating X-rays that can acquire an X-ray image of a subject at a high speed are provided. When a CT system checks a subject, the CT system can acquire an X-ray image of the subject through rotating X-rays that are emitted from the X-ray generating apparatus and thus anX-ray image of the subject can be obtained in various angles. Further, because it is unnecessary for the X-ray generating apparatus or the subject to move relative to each other, an X-ray image can be acquired at a high speed and thus a subject can be rapidly checked.
Abstract:
An X-ray tube is provided. The X-ray tube includes a cathode electrode which is disposed in one end of a vacuum container and includes an emitter emitting an electron; a gate electrode which is disposed in the vacuum container to be adjacent to the cathode electrode; an anode electrode which is disposed in the vacuum container of the other end of a direction in which the vacuum container extends and inclines with respect to the cathode electrode; and a focusing electrode which is disposed in the vacuum container along an inner circumference surface of the vacuum container between the gate electrode and the anode electrode. The focusing electrode has an opening of which a plan cross section has a maximum width and a minimum width different from each other.
Abstract:
Provided is an X-ray tube including a cathode structure, an anode spaced apart from the cathode structure, a spacer structure disposed between the cathode structure and the anode, and an external power supply connected to each of the cathode structure, the anode, and the spacer structure. Here, the spacer structure includes a first spacer disposed adjacent to the cathode structure and a second spacer disposed on the first spacer and disposed adjacent to the anode. The first spacer includes a first portion adjacent to the cathode structure and a second portion adjacent to a contact point of the first spacer and the second spacer. The second spacer includes a third portion adjacent to the contact point and a fourth portion adjacent to the anode. Each of the first portion and the third portion has a volume resistivity less than that of the second portion.
Abstract:
Provided is a field emission device including a cathode electrode and an anode electrode, which are spaced apart from each other, an emitter disposed on the cathode electrode, a gate electrode disposed between the cathode electrode and the anode electrode and including a gate opening that overlaps the emitter, and a plurality of alignment electrodes disposed between the gate electrode and the cathode electrode. Here, the alignment electrodes surround a side surface of the emitter.
Abstract:
Provided is an electron emission source including a substrate, a fixed structure provided on the substrate, and an electron emission yarn provided between the substrate and the fixed structure. The fixed structure includes a first portion having a first width and a second portion having a second width greater than the first width, and the electron emission yarn extends on a first sidewall of the first portion of the fixed structure from between the fixed structure and the substrate.