Abstract:
Provided is an X-ray tube. The X-ray tube includes an electrode on which an electron beam impacts to generate an X-ray, and a window on which the electrode is disposed and through which the X-ray generated from the electrode is transmitted. The electrode includes a channel passing through the electrode, and the electron beam is provided into the channel to generate the X-ray.
Abstract:
An X-ray tube is provided. The X-ray tube includes a first housing including an X-ray window formed therein, a second housing being rotatable about a rotational shaft installed within the first housing, an anode installed on the rotational shaft within the second housing and positioned in one side of the rotational shaft in an extending direction of the rotational shaft, an emitter installed on the rotational shaft within the second housing, positioned in the other side of the rotational shaft in the extending direction of the rotational shaft, and emitting electron beams, a lens unit installed between the anode and the emitter and focusing the electron beams emitted from the emitter to the anode, and an electron beam deflection unit installed on the rotational shaft to deflect an angle of electron beams moving toward the anode from the lens unit.
Abstract:
The present disclosure may provide a field emission device with an enhanced beam convergence. For this, the device may include a gate structure disposed between a cathode electrode and an anode electrode, wherein the gate structure includes a gate electrode and an atomic layer sheet disposed on the gate electrode, the gate electrode facing an emitter and having at least one aperture formed therein.
Abstract:
Provided are a field emission device and a method of manufacturing the same. The field emission device includes an anode electrode and a cathode electrode which are opposite to each other, a counter layer provided on the anode electrode, and a field emitter provided on the cathode electrode and facing the counter layer. Herein, the field emitter includes a carbon nanotube emitting cold electrons and a photoelectric material emitting photo electrons.
Abstract:
Provided is a current controlling device for controlling an electric field emission current in connection with an electric field emission device which emits electrons in response to an applied voltage, the device including: a first current controlling transistor forming a current path in response to a first gate voltage; a second current controlling transistor connected between the field emission device and the first current controlling transistor and forming a current path in response to a second gate voltage; and a control logic controlling the first and second gate voltages, wherein the control logic controls a upper limit of the field emission current by using the first gate voltage.
Abstract:
The present disclosure may provide a micro X-ray tube with a filter tube to filter X-rays and at the same time to serve as an insulator. For this, the X-ray tube may include a filter tube between a second electrode and a gate electrode, hence separating from each other. The second electrode may have a target and the gate electrode may accelerate an electron-beam to collide with the target. The filter tube includes an alumina (Al2O3). The target is inclined to allow the X-rays to be directed toward the filter tube.
Abstract translation:本公开可以提供具有过滤管的微型X射线管,以过滤X射线并同时用作绝缘体。 为此,X射线管可以包括在第二电极和栅电极之间的过滤管,因此彼此分离。 第二电极可以具有靶,并且栅电极可以加速电子束以与目标物碰撞。 过滤管包括氧化铝(Al 2 O 3)。 目标倾向于允许X射线被引向过滤管。
Abstract:
Provided herein is a field emission device. The field emission device includes a cathode which is connected to a negative power supply and emits electrons, an anode which is connected to a positive power supply and includes a target material receiving the electrons emitted from the cathode, and a ground electrode which is formed to face the anode and has an opening through which the electrons emitted from the cathode pass. The ground electrode is grounded so that when an arc discharge occurs due to high voltage operation of the anode, electric charge produced by the arc discharge is emitted to a ground.
Abstract:
Provided is a method of driving multi electrical field emission devices. The method includes: respectively connecting first current control circuit devices for current path formation to a plurality of electric field emission devices; commonly connecting a second current control circuit device to the first current control circuit devices to commonly control the first current control circuit devices; and driving the first current control circuit devices at different timings when the second current control circuit device is driven.
Abstract:
A method and apparatus for generating X-rays that can acquire an X-ray image of a subject at a high speed are provided. When a CT system checks a subject, the CT system can acquire an X-ray image of the subject through rotating X-rays that are emitted from the X-ray generating apparatus and thus anX-ray image of the subject can be obtained in various angles. Further, because it is unnecessary for the X-ray generating apparatus or the subject to move relative to each other, an X-ray image can be acquired at a high speed and thus a subject can be rapidly checked.
Abstract:
An X-ray tube is provided. The X-ray tube includes a cathode electrode which is disposed in one end of a vacuum container and includes an emitter emitting an electron; a gate electrode which is disposed in the vacuum container to be adjacent to the cathode electrode; an anode electrode which is disposed in the vacuum container of the other end of a direction in which the vacuum container extends and inclines with respect to the cathode electrode; and a focusing electrode which is disposed in the vacuum container along an inner circumference surface of the vacuum container between the gate electrode and the anode electrode. The focusing electrode has an opening of which a plan cross section has a maximum width and a minimum width different from each other.