Abstract:
A monitoring system for monitoring operation of a refrigerant-cycle system is disclosed. A differential pressure sensor measures a pressure difference between: (i) air at a first location upstream of an evaporator of the refrigerant-cycle system; and (ii) air at a second location downstream of the evaporator of the refrigerant-cycle system. An electrical sensor measures an electrical quantity indicative of power consumption of the refrigerant-cycle system. A processing system determines whether airflow through the evaporator is restricted based on the pressure difference. The processing system calculates an efficiency of the refrigerant-cycle system based on the power consumption of the refrigerant-cycle system.
Abstract:
A monitoring system for monitoring operation of a refrigerant-cycle system is disclosed. A condenser unit sensor measures an operating characteristic of a condenser unit, the condenser unit including a condenser and a compressor. An evaporator unit sensor measures an operating characteristic of an evaporator unit, the evaporator unit including an evaporator and a fan. An electrical sensor measures an electrical quantity indicative of power consumption of the refrigerant-cycle system. A processing system calculates an efficiency of the refrigerant-cycle system based on the power consumption of the refrigerant-cycle system, the operating characteristic of the condenser unit, and the operating characteristic of the evaporator unit.
Abstract:
A monitoring system for monitoring operation of a refrigerant-cycle system is disclosed. A differential pressure sensor measures a pressure difference between: (i) air at a first location upstream of an evaporator of the refrigerant-cycle system; and (ii) air at a second location downstream of the evaporator of the refrigerant-cycle system. An electrical sensor measures an electrical quantity indicative of power consumption of the refrigerant-cycle system. A processing system determines whether airflow through the evaporator is restricted based on the pressure difference. The processing system calculates an efficiency of the refrigerant-cycle system based on the power consumption of the refrigerant-cycle system.
Abstract:
A monitoring system for monitoring operation of a refrigerant-cycle system is disclosed. A plurality of sensors measure operating characteristics of the refrigerant-cycle system. The refrigerant-cycle system includes a condenser unit and an evaporator unit. The condenser unit includes a condenser and a compressor. The evaporator unit includes an evaporator and a fan. A processing system receives the measurements from the plurality of sensors and outputs data regarding operation of the refrigerant-cycle system to a remote monitoring system.
Abstract:
A monitoring system for monitoring operation of a refrigerant-cycle system is disclosed. A first temperature sensor measures a first temperature of air at a first location downstream of an evaporator. A second temperature sensor measures a second temperature of air a second location upstream of the evaporator. A processing system determines a temperature drop across the evaporator based on the first temperature, the second temperature, and a humidity of air. The processing system that determines whether airflow through the evaporator is restricted based on the temperature drop across the evaporator.
Abstract:
A portable monitoring system that monitors various aspects of the operation of a refrigerant-cycle system is described. In one embodiment, the system includes a processor that measures power provided to the refrigerant-cycle system and gathers data from one or more sensors and uses the sensor data to calculate a figure of merit related to the efficiency of the system. In one embodiment, the measurements performed by the monitoring system include one or more of: an evaporator input air temperature, an evaporator output air temperature, evaporator air flow, evaporator air humidity, condenser air input temperature, condenser air output temperature sensor, electrical power. In one embodiment, the portable monitoring system receives information about the refrigerant-cycle system from either the system itself or from a computer network.
Abstract:
A monitoring system for monitoring operation of a refrigerant-cycle system is disclosed. A plurality of sensors measure operating characteristics of the refrigerant-cycle system. The refrigerant-cycle system includes a condenser unit and an evaporator unit. The condenser unit includes a condenser and a compressor. The evaporator unit includes an evaporator and a fan. A processing system receives the measurements from the plurality of sensors and outputs data regarding operation of the refrigerant-cycle system to a remote monitoring system.
Abstract:
A monitoring system for monitoring operation of a refrigerant-cycle system is disclosed. An electrical sensor measures an electrical quantity indicative of power consumption of a component of the refrigerant-cycle system. A processing system selectively identifies a condition indicative of an airflow restriction through the refrigerant-cycle system based on the power consumption of the component.