Abstract:
A stator includes: a stator core having a yoke and teeth projecting from the yoke; coils attached to the stator core so as to surround the teeth; and coil fixing members, each of which is arranged at at least one of opposite ends of the stator core in a gap formed between an end face of the tooth and an inner side of the coil facing the end face. The coil fixing member includes a locking part that projects on the opposite side from the end face of the tooth to lock the coil and a projection that projects on the opposite side from the locking part, and the projection is inserted into an insert hole formed on the stator core.
Abstract:
A stator includes: a stator core having a yoke and teeth projecting from the yoke; coils attached to the stator core so as to surround the teeth; and coil fixing members, each of which is arranged at at least one of opposite ends of the stator core in a gap formed between an end face of the tooth and an inner side of the coil facing the end face. The coil fixing member includes a locking part that projects on the opposite side from the end face of the tooth to lock the coil and a projection that projects on the opposite side from the locking part, and the projection is inserted into an insert hole formed on the stator core.
Abstract:
A rotor temperature detecting device in an electric motor of the present invention includes: a power calculator configured to calculate power of an electric motor; a rotational speed detector configured to detect rotational speed of the electric motor; a storage configured to store coefficients depending on the rotational speed; and, a rotor temperature estimator configured to estimate temperature of a rotor of the electric motor, based on the power and the coefficient.
Abstract:
Provided is a control device for a synchronous motor, the control device including a DC excitation command generation unit which generates a command for sending a DC current with a fixed current phase to a synchronous motor, and controls the magnitude of the DC current so as to apply deceleration torque to a rotor of the synchronous motor on the basis of at least one among the angular acceleration and the angular velocity of the rotor; and a magnetic pole position acquisition unit that acquires, as information indicating the magnetic pole position, the angular position of the rotor based on the output signal when a predetermined detection end condition is satisfied.
Abstract:
A stator includes multiple coils. The coils include multiple outer coils arranged on the base side of teeth and multiple inner coils arranged on the tip side of the teeth. The outer coils and the inner coils are alternately arranged along the circumferential direction of a stator core. Each coil winding of the outer coils is formed in a non-fixed state, and each coil winding of inner coils is formed in a fixed state.
Abstract:
A stator which prevents deformation of component elements of the stator and which effectively removes heat generated by coils at the time of operation. The stator of a motor comprises a stator core having a cylindrical back yoke and teeth projecting out from the back yoke to the inside in the diametrical direction, coils wound around the teeth, an outer cylinder surrounding the back yoke, and heat conducting parts abutting against both an inner circumferential surface of the outer cylinder and coil ends of the coils.
Abstract:
In the rotor of the present invention, each magnet has an inward part adjoining the rotor core and an outward part positioned outward of the inward part in a radial direction of the rotor core. The outward has a facing surface which faces a stator and a pair of side surfaces which extend from two end parts of the facing surface in a circumferential direction toward the inward part. The inward part has a pair of overhanging parts which overhangs outward in the circumferential direction with respect to the pair of side surfaces of the outward part. Each locking projection of the rotor core passes between overhanging parts of two adjoining magnets and projects outward in the radial direction to engage with the overhanging parts.
Abstract:
A machine learning apparatus includes: a state observation unit that observes a state variable composed of at least one of data relating to the number of errors that is an error between a position command relative to a rotor of a motor which is drive-controlled by the motor control apparatus and an actual position of a feed mechanism unit, an operation program of the motor control apparatus, any command of the position command, a speed command, or a current command in the motor control apparatus, data relating to a workpiece machining condition in a machine tool including the motor control apparatus, and data relating to a state of the machine tool including the motor control apparatus; and a learning unit that learns a condition associated with the number of corrections used to correct the above-mentioned command in accordance with a training data set constituted by the state variable.
Abstract:
A temperature estimating apparatus for a synchronous motor comprises: a voltage command generating unit for controlling d-phase current by increasing or decreasing d-phase and q-phase voltages; a voltage acquiring unit for d-phase and q-phase voltages when the d-phase current is varied; a rotating speed detecting unit for the synchronous motor; a current detecting unit for the d-phase and q-phase currents; a winding temperature acquiring unit; a winding resistance converting unit for winding resistance from winding temperature; an inductance calculating unit for d-axis inductance based on the variation of the d-phase current and the q-phase voltage and on the rotating speed; a counter electromotive voltage constant calculating unit from the q-phase voltage, the varied d-phase current, the rotating speed, the q-phase current, the winding resistance, and the d-axis inductance; and a magnet temperature estimating unit for estimating magnet temperature based on the counter electromotive voltage constant.
Abstract:
A rotor temperature detecting device in an electric motor of the present invention includes: a power calculator configured to calculate power of an electric motor; a rotational speed detector configured to detect rotational speed of the electric motor; a storage configured to store coefficients depending on the rotational speed; and, a rotor temperature estimator configured to estimate temperature of a rotor of the electric motor, based on the power and the coefficient.