Abstract:
A steering system for a road vehicle; the steering system comprises: a steering wheel provided with an outer ring, which is mounted so as to rotate around a rotation axis and has no mechanical connection to steering wheels; a support element, which, on one side, can be rigidly fixed on the inside of the vehicle and, on the other side, is connected to the steering wheel so as to support the steering wheel; and a position sensor, which is designed to detect the angular position of the outer ring of the steering wheel around the rotation axis. The support element is telescopic so as to vary its axial size along the rotation axis in order to change the axial position of the steering wheel.
Abstract:
An embodiment of a rotating electrical machine has: a shaft rotatably mounted to rotate around a central rotation axis; a rotor carried by the shaft; a stator which supports stator windings and is arranged around the rotor to enclose the rotor therein; a cylindrical casing which encloses the stator therein; and a cooling circuit which is intended for the circulation of a cooling fluid, is obtained at the casing, has a single common inlet opening for the cooling fluid axially arranged in the centre of a lateral wall of the casing, and two helicoidal paths, each of which is a mirror-image twin of the other one, centrally originates from the common inlet opening and extends from the centre of the casing towards a corresponding end of the casing.
Abstract:
An internal combustion engine having: a crankshaft; camshafts that activate intake and exhaust valves; an auxiliary shaft, which rotates in an opposite direction with respect to the crankshaft and is unbalanced so as to act as balancing countershaft; and a mechanical transmission, which receives the movement from the crankshaft and controls the timing by causing the rotation of the camshafts and, at the same time, causes the rotation of the auxiliary shaft.
Abstract:
A method and unit to control a steering system for a road vehicle, which steering system adjusts the steering angle of the front wheels of the road vehicle by means of a steering wheel; in a preliminary design and optimization step, an actual transmission error is determined, caused by the mechanical structure of a transmission device of the steering wheel which mechanically connects a steering wheel to a steering rod mechanically connected to the hubs of the front wheels; the current angular position of the steering wheel is measured; and the intensity of the servoassistance force applied by a servomechanism to the steering rod is changed as a function of the current angular position of the steering wheel and as a function of the actual transmission error.
Abstract:
An automatic manual transmission for a car provided with an internal combustion engine, the automatic manual transmission having: a mechanical gearbox provided with at least one primary shaft, at least one secondary shaft, a plurality of pairs of gears and a plurality of locking devices, actuated by first actuators, a variable ratio transmission device, which is arranged upstream of the primary shaft and is adjustable to have two different transmission ratios: a first unitary direct drive transmission ratio and a second multiplying transmission ratio, and a second actuator, which is coupled to the transmission device to vary the transmission ratio of the transmission device itself.
Abstract:
A method and unit to control a steering system for a road vehicle, which steering system adjusts the steering angle of the front wheels of the road vehicle by means of a steering wheel; in a preliminary design and optimization step, an actual transmission error is determined, caused by the mechanical structure of a transmission device of the steering wheel which mechanically connects a steering wheel to a steering rod mechanically connected to the hubs of the front wheels; the current angular position of the steering wheel is measured; and the intensity of the servoassistance force applied by a servomechanism to the steering rod is changed as a function of the current angular position of the steering wheel and as a function of the actual transmission error.
Abstract:
A road vehicle with an electric drive having: a heat engine provided with a carrier shaft; a gearbox; at least one pump actuated by a carrier shaft; at least a reversible electric machine; a first mechanical transmission, which transmits the motion from the drive shaft of the heat engine to the carrier shaft and is provided with a first freewheel; a second mechanical transmission, which transmits the motion from the shaft of the electric machine to the carrier shaft and is provided with a second freewheel; and a third mechanical transmission, which is arranged in parallel to the second mechanical transmission, transmits the motion from the shaft of the electric machine to the carrier shaft, is provided with a third freewheel and reverses the direction of motion with respect to the second mechanical transmission.
Abstract:
A steering system for a road vehicle; the steering system comprises: a steering wheel provided with an outer ring, which is mounted so as to rotate around a rotation axis and has no connection to steering wheels; a position sensor, which is designed to detect the angular position of the outer ring of the steering wheel around the rotation axis; and a mechanical limit stop device, which is coupled to the outer ring of the steering wheel and limits, in both directions, the maximum angular width of the rotation of the steering wheel around the rotation axis, so that the steering wheel can make, on the whole, a rotation around the rotation axis that is greater than 360°.
Abstract:
An automatic manual transmission for a hybrid vehicle provided with an internal combustion engine and with an electrical machine. The automatic manual transmission has: a servo-assisted mechanical gearbox; a differential gear, which transmits the motion to driving wheels; a clutch; a servo-assisted drive device with a variable gear ratio; an auxiliary shaft, along which the electrical machine is mounted; a drive shaft connecting the differential gear to the servo-assisted drive device, which is arranged immediately downstream of the gearbox and directly receives the motion from a secondary shaft of the gearbox; a first connectable/disconnectable and servo-assisted connection device, which is suited to connect the auxiliary shaft to the drive shaft; and a second connectable/disconnectable and servo-assisted connection device, which is suited to connect the auxiliary shaft to the secondary shaft of the gearbox.
Abstract:
A vehicle with connectable four-wheel drive. The vehicle includes an engine with a drive shaft; a pair of main drive wheels; a main transmission line which permanently connects the drive shaft to the main drive wheels, the main transmission line including a main gearbox and a main differential; a pair of normally driven secondary drive wheels; and a connectable secondary transmission line for connecting the drive shaft also to the secondary drive wheels and having a geared transmission, at least one secondary clutch which on one side is connected to the drive shaft upstream of the main gearbox and on the other side is connected to the secondary drive wheels, and a continuously variable transmission which is controlled electronically to vary its transmission ratio in a continuous manner between two limit values without ever interrupting the transmission of the driving torque.