Abstract:
Techniques are disclosed for measurement devices and methods to obtain physical parameters and thermal images associated with a scene in an integrated manner. In one embodiment, a measurement device includes an infrared (IR) imaging module configured to capture thermal images of a scene; a moisture sensor configured to detect a moisture parameter associated with an external article; a housing configured to be hand-held by a user and at least partially enclosing the IR imaging module; a display fixed relative to the housing and configured to display user-viewable thermal images; and a logic device configured to freeze a user-viewable thermal image on the display, overlay information to indicate a first detection of the moisture parameter onto the frozen user-viewable thermal image on the display, and update the overlaid information to indicate a second detection of the moisture parameter.
Abstract:
Various techniques are disclosed for providing electrical current and/or voltage sensor probes or tags integrated with measurement circuitry. For example, an electrical sensor is provided that includes a probe adapted to be arranged to at least partially encircle a conductor to be measured, wherein the probe has a proximal end and a distal end, the proximal end terminating in a base portion that houses measurement circuitry. The base portion may also include electrical components suitable for displaying, wirelessly transmitting, and/or otherwise conveying the measured electrical parameters. In some embodiments, the distal end of the probe may be removably received by the base portion, such that the probe forms a loop encircling the conductor when measuring it. In other embodiments, the probe may resiliently clip on to the conductor. In another example, an electrical sensor includes an attachable tag that can be mounted to the conductor to be measured.
Abstract:
Various techniques are disclosed for providing a device attachment configured to releasably attach to and provide infrared imaging functionality to mobile phones or other portable electronic devices. For example, a device attachment may include a housing with a tub on a rear surface thereof shaped to at least partially receive a user device, an infrared sensor assembly disposed within the housing and configured to capture thermal infrared image data, and a processing module communicatively coupled to the infrared sensor assembly and configured to transmit the thermal infrared image data to the user device. Thermal infrared image data may be captured by the infrared sensor assembly and transmitted to the user device by the processing module in response to a request transmitted by an application program or other software/hardware routines running on the user device.
Abstract:
Various techniques are provided to monitor electrical equipment. In some implementations, a monitoring system for a cabinet may include an infrared camera configured to capture thermal images of at least a portion of electrical equipment positioned in an interior cavity of the cabinet. In some implementations, the monitoring system also includes a communication interface configured to transmit the thermal images from the infrared camera for external viewing by a user. In some implementations, the thermal images may be provided through various wired and wireless communication techniques. In some implementations, the infrared camera may receive electrical power through a physical coupling to an electrical connector within the cabinet and/or through electromagnetic energy harvesting techniques. Other implementations are also provided.
Abstract:
Techniques are disclosed for measurement devices and methods to obtain measurements of various physical parameters in an integrated manner. For example, according to one or more embodiments, a measurement device includes a housing configured to be hand-held by a user; a light sensor configured to sense light and generate a signal in response; a logic device configured to process the signal from the light sensor to determine an intensity of the light, the logic device being further configured to receive and process another signal to determine a magnitude of a physical parameter associated with an external article; and a display configured to present information representing the intensity of the light and the magnitude of the physical parameter. Such a measurement device may be conveniently carried and utilized by electricians or other users, for example, to perform lighting installation or retrofitting without a need for multiple different devices.
Abstract:
Various techniques are provided to monitor electrical equipment. In some implementations, a monitoring system for a cabinet may include an infrared camera and a non-thermal camera. The infrared camera may be configured to capture one or more thermal images of at least a portion of electrical equipment positioned in an interior cavity of the cabinet. The non-thermal camera may be configured to capture one or more non-thermal images such as visible light images of the portion of electrical equipment. In some implementations, combined images may be generated that include characteristics of the thermal images and the non-thermal images for viewing by a user. In some implementations, the cameras may receive electrical power through a physical coupling to an electrical connector within the cabinet and/or through electromagnetic energy harvesting techniques. Other implementations are also provided.
Abstract:
Techniques are disclosed for measurement devices and methods to obtain physical parameters and thermal images associated with a scene in an integrated manner. In one embodiment, a measurement device includes an infrared (IR) imaging module configured to capture thermal images of a scene; a moisture sensor configured to detect a moisture parameter associated with an external article; a housing configured to be hand-held by a user and at least partially enclosing the IR imaging module; a display fixed relative to the housing and configured to display user-viewable thermal images; and a logic device configured to freeze a user-viewable thermal image on the display, overlay information to indicate a first detection of the moisture parameter onto the frozen user-viewable thermal image on the display, and update the overlaid information to indicate a second detection of the moisture parameter.
Abstract:
Techniques are disclosed for measurement devices and methods to obtain measurements of various physical parameters in an integrated manner. For example, according to one or more embodiments, a measurement device includes a housing configured to be hand-held by a user; a light sensor configured to sense light and generate a signal in response; a logic device configured to process the signal from the light sensor to determine an intensity of the light, the logic device being further configured to receive and process another signal to determine a magnitude of a physical parameter associated with an external article; and a display configured to present information representing the intensity of the light and the magnitude of the physical parameter. Such a measurement device may be conveniently carried and utilized by electricians or other users, for example, to perform lighting installation or retrofitting without a need for multiple different devices.