Abstract:
Various techniques are provided to monitor electrical equipment. In some implementations, a monitoring system for a cabinet may include an infrared camera and a non-thermal camera. The infrared camera may be configured to capture one or more thermal images of at least a portion of electrical equipment positioned in an interior cavity of the cabinet. The non-thermal camera may be configured to capture one or more non-thermal images such as visible light images of the portion of electrical equipment. In some implementations, combined images may be generated that include characteristics of the thermal images and the non-thermal images for viewing by a user. In some implementations, the cameras may receive electrical power through a physical coupling to an electrical connector within the cabinet and/or through electromagnetic energy harvesting techniques. Other implementations are also provided.
Abstract:
An infrared camera system is provided to detect absorption of infrared radiation in a selected spectral bandwidth. In one example, an infrared camera system includes a lens adapted to receive infrared radiation from a survey scene comprising one or more gasses. The infrared camera system also includes a focal plane array comprising a plurality of quantum well infrared photo detectors (QWIPs). The QWIPs are tuned to detect a limited spectral bandwidth of the infrared radiation corresponding to at least a portion of an infrared absorption band of the one or more gasses. The infrared camera system also includes an optical band pass filter positioned substantially between the lens and the focal plane array. The optical band pass filter is adapted to filter the infrared radiation to a wavelength range substantially corresponding to the limited spectral bandwidth of the QWIPs before the infrared radiation is received by the focal plane array.
Abstract:
Flight based infrared imaging systems and related techniques, and in particular UAS based thermal imaging systems, are provided to improve the monitoring capabilities of such systems over conventional infrared monitoring systems. An infrared imaging system is configured to compensate for various environmental effects (e.g., position and/or strength of the sun, atmospheric effects) to provide high resolution and accuracy radiometric measurements of targets imaged by the infrared imaging system. An infrared imaging system is alternatively configured to monitor and determine environmental conditions, modify data received from infrared imaging systems and other systems, modify flight paths and other commands, and/or create a representation of the environment.
Abstract:
Flight based infrared imaging systems and related techniques, and in particular UAS based thermal imaging systems, are provided to improve the monitoring capabilities of such systems over conventional infrared monitoring systems. An infrared imaging system is configured to compensate for various environmental effects (e.g., position and/or strength of the sun, atmospheric effects) to provide high resolution and accuracy radiometric measurements of targets imaged by the infrared imaging system. An infrared imaging system is alternatively configured to monitor and determine environmental conditions, modify data received from infrared imaging systems and other systems, modify flight paths and other commands, and/or create a representation of the environment.
Abstract:
Various techniques are provided to monitor electrical equipment. In some implementations, a monitoring system for a cabinet may include an infrared camera configured to capture thermal images of at least a portion of electrical equipment positioned in an interior cavity of the cabinet. In some implementations, the monitoring system also includes a communication interface configured to transmit the thermal images from the infrared camera for external viewing by a user. In some implementations, the thermal images may be provided through various wired and wireless communication techniques. In some implementations, the infrared camera may receive electrical power through a physical coupling to an electrical connector within the cabinet and/or through electromagnetic energy harvesting techniques. Other implementations are also provided.
Abstract:
An infrared camera system is provided to detect absorption of infrared radiation in a selected spectral bandwidth. In one example, an infrared camera system includes a lens adapted to receive infrared radiation from a survey scene comprising one or more gasses. The infrared camera system also includes a focal plane array comprising a plurality of quantum well infrared photo detectors (QWIPs). The QWIPs are tuned to detect a limited spectral bandwidth of the infrared radiation corresponding to at least a portion of an infrared absorption band of the one or more gasses. The infrared camera system also includes an optical band pass filter positioned substantially between the lens and the focal plane array. The optical band pass filter is adapted to filter the infrared radiation to a wavelength range substantially corresponding to the limited spectral bandwidth of the QWIPs before the infrared radiation is received by the focal plane array.
Abstract:
Infrared imaging systems and methods disclosed herein, in accordance with one or more embodiments, provide for an infrared camera system comprising a protective enclosure and an infrared image sensor adapted to capture and provide infrared images of areas of a structure. The infrared camera system includes a processing component adapted to receive the infrared images of the areas of the structure from the infrared image sensor, process the infrared images of the areas of the structure by generating thermal information, and store the thermal information in a memory component for analysis.
Abstract:
Systems having throwable devices with thermal imaging capabilities may be provided for observing a potentially hazardous environment with possible human or environmental threats. A system may include a throwable observation device configured to be thrown into the potentially hostile environment and to capture at least thermal images of portions of the environment and a mobile handset configured to wirelessly receive the captured thermal images from the observation device. The observation device may include a durable housing structure having openings, an imaging module in each of the openings, a processor for processing the captured thermal images, and communications components for transmitting the captured thermal images to the mobile handset. The mobile handset may include a processor for further processing the received captured thermal images and a display for displaying processed thermal images.
Abstract:
An infrared camera system is provided to detect absorption of infrared radiation in a selected spectral bandwidth. In one example, an infrared camera system includes a lens adapted to receive infrared radiation from a survey scene comprising one or more gasses. The infrared camera system also includes a focal plane array comprising a plurality of quantum well infrared photo detectors (QWIPs). The QWIPs are tuned to detect a limited spectral bandwidth of the infrared radiation corresponding to at least a portion of an infrared absorption band of the one or more gasses. The infrared camera system also includes an optical band pass filter positioned substantially between the lens and the focal plane array. The optical band pass filter is adapted to filter the infrared radiation to a wavelength range substantially corresponding to the limited spectral bandwidth of the QWIPs before the infrared radiation is received by the focal plane array.
Abstract:
An infrared camera system is provided to detect absorption of infrared radiation in a selected spectral bandwidth. In one example, an infrared camera system includes a lens adapted to receive infrared radiation from a survey scene comprising one or more gasses. The infrared camera system also includes a focal plane array comprising a plurality of quantum well infrared photo detectors (QWIPs). The QWIPs are tuned to detect a limited spectral bandwidth of the infrared radiation corresponding to at least a portion of an infrared absorption band of the one or more gasses. The infrared camera system also includes an optical band pass filter positioned substantially between the lens and the focal plane array. The optical band pass filter is adapted to filter the infrared radiation to a wavelength range substantially corresponding to the limited spectral bandwidth of the QWIPs before the infrared radiation is received by the focal plane array.