Abstract:
A method for operating a natural gas liquids processing (NGL) system, the system being selectively configured in either an ethane rejection configuration or an ethane recovery configuration, the method comprising, when the NGL system is in the ethane rejection configuration, collecting a reboiler bottom stream that, in the ethane rejection configuration, includes ethane in an amount of less than 5% by volume, and when the NGL system is in the ethane recovery configuration, collecting a reboiler bottom stream that, in the ethane recovery configuration, includes ethane in an amount of at least about 30% by volume.
Abstract:
Embodiments relate generally to systems and methods for operating a natural gas liquids plant in ethane rejection and in ethane recovery. A natural gas liquid plant may comprise an absorber configured to produce an ethane rich bottom stream and an ethane depleted vapor stream; a stripper fluidly coupled to the absorber configured to, during ethane rejection, fractionate the ethane rich bottom stream from the absorber into an ethane overhead product and a propane plus hydrocarbons product, and configured to, during ethane recovery, fractionate the ethane rich bottom stream into an ethane plus NGL stream and an overhead vapor stream; and an exchanger configured to, during ethane recovery, counter-currently contact the ethane rich bottom stream from the absorber with the ethane depleted vapor stream from the absorber, thereby heating the vapor stream and chilling the ethane rich bottom stream before the ethane rich bottom stream is fed to the stripper.
Abstract:
Separating propane and heavier hydrocarbons from a feed stream by cooling the feed stream, introducing the chilled feed stream into a feed stream separation unit, pumping the separator bottom stream, introducing the pressurized separator bottom stream into a stripper column, reducing the pressure of the separator overhead stream, introducing the letdown separator overhead stream into an absorber column, collecting a stripper overhead stream from the stripper column, chilling the stripper overhead stream, reducing the pressure of the chilled stripper overhead stream, introducing the letdown stripper overhead stream into the absorber column, collecting an absorber bottom stream, pumping the absorber bottom stream, heating the absorber bottom stream, introducing the heated absorber bottom stream into the stripper column, and collecting the stripper bottom stream from the stripper column. The stripper column bottom stream includes the propane and heavier hydrocarbons and less than about 2.0% of ethane by volume.
Abstract:
A plant includes a pretreatment unit for H2S removal and air dehydration, and at least two absorbers that receive a feed gas at a pressure of at least 300 psig with variable CO2 content (e.g., between 5 to 60 mol %), wherein the feed gas is scrubbed in the absorbers with an ultralean and a semi-lean physical solvent, respectively, at low temperatures to at least partially remove the CO2 from the feed gas. Such configurations produces a low CO2 dry treated gas and a H2S-free CO2 for sequestration while advantageously providing cooling by expansion of the rich solvent that cools the semi-lean solvent and the feed gas, wherein an ultralean solvent is produced by stripping using dry air.
Abstract:
Embodiments relate generally to systems and methods for pre-cooling a natural gas stream to a liquefaction plant. A system may comprise a compressor configured to receive a first natural gas stream at a first pressure and produce a second natural gas stream at a second pressure; an exchanger, wherein the exchanger is configured to receive the second natural gas stream as the second pressure and cool the second natural gas stream to produce a cooled natural gas stream; and an expander, wherein the expander is configured to receive the cooled natural gas stream and expand the cooled natural gas stream from the second pressure to a third pressure.
Abstract:
A system for the removal of nitrogen from a liquid natural gas (LNG) stream. The system. comprises a feed heat changer and a stripper column. The heat receives the LNG stream and cools the LNG stream via heat exchange with a stripper column side-draw stream to yield a cooled LNG stream and a heated side-draw stream. The stripper column receives the cooled LNG stream at a first tray and the heated side-draw stream. The stripper column produces the stripper column side-draw stream, a stripper column overhead stream, and a stripper column bottom stream. The stripper column side-draw stream is taken from the stripper column at a second tray. The second tray is at least about 15 feet higher than the feed heat exchanger.
Abstract:
Gas processing plants and methods are contemplated in CO2 is effectively removed to very low levels from a feed gas to an NRU unit by adding a physical solvent unit that uses waste nitrogen produced by the NRU as stripping gas to produce an ultra-lean solvent, which is then used to treat the feed gas to the NRU unit. Most preferably, the physical solvent unit includes a flash unit and stripper column to produce the ultra-lean solvent.
Abstract:
A method for operating a natural gas liquids processing (NGL) system, the system being selectively configured in either an ethane rejection configuration or an ethane recovery configuration, the method comprising, when the NGL system is in the ethane rejection configuration, collecting a reboiler bottom stream that, in the ethane rejection configuration, includes ethane in an amount of less than 5% by volume, and when the NGL system is in the ethane recovery configuration, collecting a reboiler bottom stream that, in the ethane recovery configuration, includes ethane in an amount of at least about 30% by volume.
Abstract:
Plants, processes, and methods for reducing the H2S and CO2 contents of shale gasses from fields that produce shale gasses having varying H2S and CO2 contents are provided. Acid gas enters an absorber and is scrubbed using a lean physical solvent, producing a treated gas and a rich physical solvent. The H2S content of the treated gas is further reduced in an amine absorber, producing a pipeline gas and a semi-lean amine. The pipeline gas contains lower levels of H2S and CO2 than gas produced using a polishing bed. A physical solvent regeneration unit regenerates the lean physical solvent from the rich physical solvent for feeding into the absorption unit. An amine regeneration unit regenerates the lean amine from the semi-lean amine for feeding into the amine absorber. Contemplated plants may further comprise a Claus Unit or a Redox unit for oxidizing H2S to elemental sulfur.
Abstract:
Separating propane and heavier hydrocarbons from a feed stream by cooling the feed stream, introducing the chilled feed stream into a feed stream separation unit, pumping the separator bottom stream, introducing the pressurized separator bottom stream into a stripper column, reducing the pressure of the separator overhead stream, introducing the letdown separator overhead stream into an absorber column, collecting a stripper overhead stream from the stripper column, chilling the stripper overhead stream, reducing the pressure of the chilled stripper overhead stream, introducing the letdown stripper overhead stream into the absorber column, collecting an absorber bottom stream, pumping the absorber bottom stream, heating the absorber bottom stream, introducing the heated absorber bottom stream into the stripper column, and collecting the stripper bottom stream from the stripper column. The stripper column bottom stream includes the propane and heavier hydrocarbons and less than about 2.0% of ethane by volume.