Abstract:
A system and method for treating associated gas in which a stream of raw gas is passed through safety valving, an inlet pressure control mechanism, and an inlet scrubber. Pressure/temperature data is transmitted to a control system via pressure and temperature transducers. The raw gas is sent to a gas compressor to generate pressurized gas, which is sent to an aerial cooler and a chiller heat exchanger, in which a chilling media contacts the pressurized gas. The chilled pressurized gas is sent to a vapor liquid separator to generate processed gas, which is routed through either a system backpressure valve or a pressure reducing recycle valve that directs the processed gas to the inlet scrubber. The processed gas that has passed through the system backpressure valve is delivered as fuel or routed through a backpressure regulating recycle valve that directs the processed gas to a system inlet pressure reducing valve.
Abstract:
Embodiments provide a method for preventing shutdowns in LNG facilities by removing heavy hydrocarbons from the inlet gas supply. According to an embodiment, there is provided an LNG facility treating pipeline quality natural gas that is contaminated with lubrication oil and low concentrations of heavy hydrocarbons. Due to contamination, the behavior of the pipeline quality natural gas is not properly predicted by thermodynamic modeling. In an embodiment, heavy hydrocarbons are removed by a drain system in a heat exchanger. In an embodiment, heavy hydrocarbons are removed by a treatment bed.
Abstract:
Embodiments provide a method for preventing shutdowns in LNG facilities by removing heavy hydrocarbons from the inlet gas supply. According to an embodiment, there is provided an LNG facility treating pipeline quality natural gas that is contaminated with lubrication oil and low concentrations of heavy hydrocarbons. Due to contamination, the behavior of the pipeline quality natural gas is not properly predicted by thermodynamic modeling. In an embodiment, heavy hydrocarbons are removed by a drain system in a heat exchanger. In an embodiment, heavy hydrocarbons are removed by a treatment bed.
Abstract:
A method for operating a natural gas liquids processing (NGL) system, the system being selectively configured in either an ethane rejection configuration or an ethane recovery configuration, the method comprising, when the NGL system is in the ethane rejection configuration, collecting a reboiler bottom stream that, in the ethane rejection configuration, includes ethane in an amount of less than 5% by volume, and when the NGL system is in the ethane recovery configuration, collecting a reboiler bottom stream that, in the ethane recovery configuration, includes ethane in an amount of at least about 30% by volume.
Abstract:
A turbine outlet frozen gas capture apparatus is provided and includes an enclosure divided into first and second chambers, the first chamber being receptive of turbine outlet exhaust including frozen gas, a wheel disposed and configured to be rotatable such that frozen gas received in the first chamber is captured and transported into the second chamber and a heater disposed within the second chamber and configured to vaporize the frozen gas transported therein to thereby produce vaporized gas.
Abstract:
A cryogenic insulation system including a low density low conductivity insulation material for cryogenic service, wherein the low conductivity insulation material is essentially free of hydrocarbon residue. A method for producing a low density low conductivity insulation material for cryogenic service, comprising: exposing the low density low conductivity insulation material to at least one of an elevated temperature or a reduced pressure, for a length of time sufficient to reduce the hydrocarbon residue to less than 1000 ppm.
Abstract:
The invention relates to a method for the cryogenic separation, the cooling or the liquefaction of a fluid using an exchange line, that comprises extracting from said exchange line at least one dual phase fluid (11), separating said dual phase fluid into at least one vapour fraction (4) and one liquid fraction (5) in a phase separator (40), expanding at least one portion of the liquid fraction (5) using a first expansion means (60, 90), reinjecting, reheating and at least partially vaporising said expanded liquid fraction in the exchange line, the first expansion means being a valve, wherein during the cooling of said exchange line, at least a fraction of the fluid extracted from the exchange line (2, 4 or 5) and/or from the phase separator (40) is expanded in second expansion means (61, 71, 81, 91) parallel to the first expansion means (6), while during a normal operation, the second expansion means is essentially closed.
Abstract:
In a process for the separation of a gas mixture at superatmospheric pressure by partial condensation at cryogenic temperatures and wherein the separated condensate and uncondensed vapor are passed back as returning streams in indirect countercurrent heat exchange relationship with the incoming feed mixture, the power required for providing the refrigeration and energy requirements for the separation are reduced by supplying said requirements by means of a heat pump alone or together with at least one separate refrigeration cycle and/or some Joule-Thomson expansion of the condensate, and in the heat pump a compressed multi-component gaseous medium is condensed by heat exchange with said returning streams over a first temperature range and then expanded by Joule-Thomson expansion, and the expanded condensate is evaporated by heat exchange with the feed gas mixture over a lower temperature range than said first temperature range, and recycled for recompression.
Abstract:
The diclosure is directed to methods of gas separation wherein controlled flow vortex tube expansion principles are employed in liquefaction and cold producing processes; a multi-stage low pressure and a multi-stage high pressure process being involved. The vortex tube is introduced in the parent application as being employed in cases with more efficiency than the expansion turbine. Herein, by addition, support figures are supplied for these cases, and also vortex tube separation processes are shown capable of replacing rectification column processes; liquefaction and separation processes using controlled flow vortex tubes with double purpose being submitted herein as new.
Abstract:
A hydrocyclone for separating a vapor from a carrier gas is disclosed. The hydrocyclone comprises one or more nozzles. A cryogenic liquid is injected to a tangential feed inlet at a velocity that induces a tangential flow and a cyclone vortex in the hydrocyclone. The carrier gas is injected into the cryogenic liquid, causing the vapor to dissolve, condense, desublimate, or a combination thereof, forming a vapor-depleted carrier gas and a vapor-enriched cryogenic liquid. The vapor-depleted carrier gas is drawn through a vortex finder and the vapor-enriched cryogenic liquid is drawn through an apex nozzle outlet. In this manner, the vapor is removed from the carrier gas.