Abstract:
The magnetic recording medium includes a non-magnetic support; and a magnetic layer including a ferromagnetic powder, in which an anisotropic magnetic field Hk is more than 5.0 kOe and less than 7.5 kOe, an anisotropic magnetic field distribution is more than 0.75 and less than 1.20, the magnetic layer has a servo pattern, the ferromagnetic powder is a hexagonal strontium ferrite powder, and an average particle size of the hexagonal strontium ferrite powder is 9 nm to 20 nm.
Abstract:
The invention provides a core-shell particle which can provide, by being calcinated, epsilon type iron oxide-based compound particles that have a small coefficient of variation of primary particle diameter and show excellent SNR and running durability when employed in a magnetic recording medium as well as applications thereof. The core-shell particle includes: a core including at least one iron oxide selected from Fe2O3 or Fe3O4, or iron oxyhydroxide; and a shell that coats the core, the shell including a polycondensate of a metal alkoxide and a metal element other than iron, as well as applications thereof.
Abstract:
A magnetic recording medium includes: a non-magnetic support; and a magnetic layer including a binding agent and a ferromagnetic powder including at least one epsilon-type iron oxide compound selected from the group consisting of ε-Fe2O3 and compound represented by Formula (1) (A represents at least one metal element other than Fe, and a satisfies 0
Abstract:
Provided is a recording device. The recording device includes: an external magnetic field application unit that is configured to apply an external magnetic field to a magnetic recording medium; a light irradiation unit that is configured to irradiate light; and a light focusing unit that is configured to focus the light from the light irradiation unit by resonating the light to generate an enhanced magnetic field in which a magnetic field of the light is enhanced, in which magnetization of the magnetic recording medium is inverted by applying the external magnetic field and the enhanced magnetic field to the magnetic recording medium.
Abstract:
The magnetic recording medium includes a non-magnetic support; and a magnetic layer including a ferromagnetic powder, in which the ferromagnetic powder is an ε-iron oxide powder having an average particle size of 9.0 nm to 20.0 nm, and in the ε-iron oxide powder, a content of particles having a particle size smaller than 8.0 nm is less than 20.0% by mass, a content of particles having a particle size smaller than 6.0 nm is less than 5.0% by mass, and a content of particles having a particle size greater than 25.0 nm is less than 20.0% by mass.
Abstract:
The magnetic recording medium includes a non-magnetic support; and a magnetic layer including a ferromagnetic powder, in which the ferromagnetic powder is an ε-iron oxide powder having an average particle size of 5.0 nm to 16.0 nm, a coercivity Hc in a vertical direction is 1,884 Oe to 3,141 Oe, a ten-point average roughness Rz of a surface of the magnetic layer is 35.0 nm to 45.0 nm, and a ratio Rp/Rz of a maximum peak height Rp of the surface of the magnetic layer to the Rz is 0.25 to 1.00.
Abstract:
The ϵ-iron oxide powder has an average particle size in a range of 5.0 to 16.0 nm and an uneven distribution of an M atom in a surface layer portion, in which the M atom is one or more kinds of atoms selected from the group consisting of an aluminum atom and an yttrium atom, and a content of the M atom with respect to 100 atom % of iron atoms is in a range of 4.0 to 9.5 atom %.
Abstract:
Provided is hexagonal strontium ferrite powder for magnetic recording, in which an activation volume is 800 to 1,500 nm3, a content of rare earth atom with respect to 100 atom % of iron atom is 0.5 to 5.0 atom %, and a rare earth atom surface portion uneven distribution is provided.
Abstract:
Provided is a method for producing a conductive member including: forming a first silver halide emulsion layer, a light absorption layer, and a second silver halide emulsion layer on a transparent support in this order; performing pattern exposure on the first silver halide emulsion layer; and the second silver halide emulsion layer and applying a development treatment thereto to obtain a conductive layer comprising a thin metal wire, in which the light absorption layer absorbs at least some of the wavelengths of light to which the first silver halide emulsion layer or the second silver halide emulsion layer is exposed.