Abstract:
Methods and systems for facilitating uplink power control (PC) and scheduling in a wireless network are provided. In one example, common interference patterns are obtained from long term channel statistics, and used to perform local PC and scheduling by distributed base stations (eNBs). In some implementations, the common interference patterns are obtained through statistical narrowing techniques that identify common ones out of a plurality of potential interference patterns. The common interference patterns may specify maximum interference thresholds and/or individual eNB-to-eNB interference thresholds which may govern the local PC and scheduling decisions of the distributed eNBs.
Abstract:
Methods and devices are provided for communicating data in a wireless channel. In one example, a method includes adapting the transmission time interval (TTI) length of transport container for transmitting data in accordance with a criteria. The criteria may include (but is not limited to) a latency requirement of the data, a buffer size associated with the data, a mobility characteristic of a device that will receive the data. The TTI lengths may be manipulated for a variety of reasons, such as for reducing overhead, satisfy quality of service (QoS) requirements, maximize network throughput, etc. In some embodiments, TTIs having different TTI lengths may be carried in a common radio frame. In other embodiments, the wireless channel may partitioned into multiple bands each of which carrying (exclusively or otherwise) TTIs having a certain TTI length.
Abstract:
System and method embodiments are disclosed to provide mechanisms that allow adaptive transmission time interval (TTI) coexistence in Long Term Evolution (LTE) and fifth generation (5G) cellular systems. In accordance with an embodiment, a method for an adaptive TTI coexistence mechanism includes allocating, by a network controller, a LTE TTI at a first bandwidth. The first bandwidth is smaller than an available system bandwidth and is centered around a carrier frequency at a center of the available system bandwidth. The method further includes broadcasting the first bandwidth in LTE system information messages, allocating adaptive TTIs in the available system bandwidth outside the first bandwidth, and broadcasting adaptive TTI bandwidth partitioning information to adaptive TTI-capable terminals.
Abstract:
A method embodiment includes implementing, by a base station (BS), a grant-free uplink transmission scheme. The grant-free uplink transmission scheme defines a first contention transmission unit (CTU) access region in a time-frequency domain, defines a plurality of CTUs, defines a default CTU mapping scheme by mapping at least some of the plurality of CTUs to the first CTU access region, and defines a default user equipment (UE) mapping scheme by defining rules for mapping a plurality of UEs to the plurality of CTUs.
Abstract:
A grant-free transmission mode may be used to communicate small traffic transmissions to reduce overhead and latency. The grant-free transmission mode may be used in downlink and uplink data channels of a wireless network. In the downlink channel, a base station transmits packets to a group of UEs in a search space without communicating any transmission code assignments to the UEs. The UEs receive the downlink packets using blind detection. In the uplink channel, UEs transmit packets in an access space using assigned access codes which are either independently derived by the UEs or otherwise communicated by the base station using a slow-signaling channel. Hence, the grant-free transmission mode allows mobile devices to make small traffic transmissions without waiting for uplink grant requests.