Abstract:
A method for operating a transmission point in a communications system includes receiving wideband feedback information at a first report rate, and receiving subband feedback information at a second report rate, wherein the first report rate is less than the second report rate. The method also includes performing dynamic rate selection for resource block groups (RBGs) of the communications system in accordance with the wideband feedback information and the subband feedback information.
Abstract:
In a multi-access communication system having a plurality of multiplexed layers and a plurality of mobile devices, mobile devices are paired over time-frequency and space resources. Transmission power is allocated such that a total power is shared among the plurality of multiplexed layers. The plurality of multiplexed layers and rate of each of the plurality of mobile devices are adjusted according to a power and a channel quality of the mobile device. Power and rate are adjusted until a scheduling criterion such as a weighted sum-rate is maximized.
Abstract:
Methods and devices are provided for communicating data in a wireless channel. In one example, a method includes adapting the transmission time interval (TTI) length of transport container for transmitting data in accordance with a criteria. The criteria may include (but is not limited to) a latency requirement of the data, a buffer size associated with the data, a mobility characteristic of a device that will receive the data. The TTI lengths may be manipulated for a variety of reasons, such as for reducing overhead, satisfy quality of service (QoS) requirements, maximize network throughput, etc. In some embodiments, TTIs having different TTI lengths may be carried in a common radio frame. In other embodiments, the wireless channel may partitioned into multiple bands each of which carrying (exclusively or otherwise) TTIs having a certain TTI length.
Abstract:
Embodiments are provided herein for increasing low density signature space for multiplexed transmissions for a plurality of users. The embodiments include generating a virtual signature using a combination operation on a plurality of basic signatures. The generated virtual signatures are provisioned as basic resource units (BRUs) for transmissions for corresponding users. The combination operation is a row-wise or column-wise permutation for combining, in each of the virtual signatures, rows or columns of corresponding basic signatures. The rows or columns represent sequences of frequency bands at one time interval or sequences of allocated time intervals at one frequency band. Alternatively, the combination operation is intra-basic resource unit (BRU) hopping. The embodiments also include generating a plurality of BRU sets comprised of virtual signatures. Each of the BRU sets is provisioned for a corresponding user.
Abstract:
A method of configuring a pilot signal includes defining a first pilot signal arrangement and defining a second pilot signal arrangement. Also, the method includes determining, by a communications controller, a first determined pilot signal arrangement in accordance with the first defined pilot signal arrangement, the second defined pilot signal arrangement, and a set of characteristics and transmitting, by the communications controller, the pilot signal having the first determined pilot signal arrangement.
Abstract:
Methods and devices are provided for communicating data in a wireless channel. In one example, a method includes adapting the transmission time interval (TTI) length of transport container for transmitting data in accordance with a criteria. The criteria may include (but is not limited to) a latency requirement of the data, a buffer size associated with the data, a mobility characteristic of a device that will receive the data. The TTI lengths may be manipulated for a variety of reasons, such as for reducing overhead, satisfy quality of service (QoS) requirements, maximize network throughput, etc. In some embodiments, TTIs having different TTI lengths may be carried in a common radio frame. In other embodiments, the wireless channel may partitioned into multiple bands each of which carrying (exclusively or otherwise) TTIs having a certain TTI length.
Abstract:
A method embodiment includes implementing, by a base station (BS), a grant-free uplink transmission scheme. The grant-free uplink transmission scheme defines a first contention transmission unit (CTU) access region in a time-frequency domain, defines a plurality of CTUs, defines a default CTU mapping scheme by mapping at least some of the plurality of CTUs to the first CTU access region, and defines a default user equipment (UE) mapping scheme by defining rules for mapping a plurality of UEs to the plurality of CTUs.