Abstract:
A memory cell is protected against current or voltage spikes. The cell includes a group of redundant data storage nodes for the storage of information in at least one pair of complementary nodes. The cell further includes circuitry for restoring information to its initial state following a current or voltage spike which modifies the information in one of the nodes of the pair using the information stored in the other node. The data storage nodes of each pair in the cell are implanted on opposite sides of an opposite conductivity type well from one another within a region of a substrate defining the boundaries of the memory cell.
Abstract:
A memory cell stores information in the form of a first logic level and a second logic level that are complementary to each other. The memory cell includes a first storage circuit and a second storage circuit for storing the first logic level and the second logic level. The first and second storage circuits each have a respective input and output. An isolation circuit provides electrical isolation of the input of the first storage device from the output of the second storage device, except during access to the first and second storage circuits.
Abstract:
An embodiment of the invention relates to a circuit for distributing an initial signal, comprising an input node receiving the initial signal, a plurality of terminal nodes each providing at least one resulting signal to a circuit component, and different connection branches between the input node and the plurality of terminal nodes, to which a plurality of intermediate nodes is connected, wherein connection branch is duplicated, so that each node among the input node and the intermediate nodes comprises two inputs and two outputs allowing double propagation of the initial signal towards the terminal nodes through duplicated connection branches, each terminal node terminal node receiving two input signals, images of the initial signal and providing the resulting initial signal: an image of the input signals if said input signals are identical, or inactive, if the input signals are different from each other.
Abstract:
A content addressable memory (CAM) includes first and second memory circuits and a comparison circuit. The first memory circuit includes first and second sets of transistors for the storage of first and second compare data. The second memory circuit includes first and second sets of transistors for the storage of enabling or disabling data. The comparison circuit includes first and second sets of comparison transistors which respectively provide for the comparison of the first and second compare data with first and second input data under the control of an output signal from the second memory circuit. The transistors of the first and second sets of transistors of the memory circuits each includes a transistor of a first conductivity type and a transistor of a second conductivity type. The transistors of the second conductivity type are formed on the same first active zone of the semiconductor substrate. The first and second sets of comparison transistors of the comparison circuit are formed in separate active zones, respectively, which are mutually separated by the first active zone.
Abstract:
A Content Addressable Memory (CAM) circuit includes memory cells preferably formed as two memory cells each having internal nodes. A compare circuit is operative with the memory cells. A common terminal (VPL) exists for the memory cells. Capacitors are added between the internal nodes of each of the memory cells and common terminal for memory cell stability.
Abstract:
A multivibrator includes a first data transfer port that receives, as input, multivibrator input data. A first, master, latch cell is connected on the output side of the first transfer port. A second, slave, latch cell is connected thereto through a second data transfer port placed between the first and second latch cells. Each latch cell includes a set of redundant data storage nodes for storing information in at least one pair of complementary nodes and circuitry for restoring information in its initial state, after a current or voltage spike has modified the information in one of the nodes of the said pair, on the basis of the information stored in the other node. The nodes of each pair are implanted opposite one another in a zone of a substrate defining the latch cell.
Abstract:
An integrated dynamic random access memory element includes two cells for the storage of two respective bits. A source region and a drain region are included. Each cell comprises a field-effect transistor having a gate and an intermediate portion which extend between the source and drain regions. A channel is provided in the intermediate portion of the transistor for each cell. A polarization electrode is placed between the respective intermediate portions of the two transistors. This polarization electrode is capacitively coupled to the intermediate portion of each transistor and is used to store the first and second bits.
Abstract:
A DRAM including an array of storage elements arranged in lines and columns, and for each column: write means adapted to biasing at least a selected one of the elements to a charge level chosen from among a first predetermined high level and a second predetermined low level, combined with read circuitry adapted to determining whether the stored charge level is greater or smaller than a predetermined charge level; and isolation circuitry adapted to isolating the array from the read and/or write means, each column further including refreshment means, distinct from the read and write circuit, for increasing, beyond the first and second predetermined levels, the charge stored in a storage element.
Abstract:
The present invention relates to a Network on chip comprising a torus matrix of processing elements formed by a juxtaposition of bricks in rows and columns, each brick comprising a longitudinal extra-connection bus segment connecting two terminals situated on opposite transverse edges of the brick on a first axis; two longitudinal intra-connection bus segments connecting circuits of the brick to respective terminals situated on the opposite transverse edges on a second axis symmetrical to the first axis with respect to the center of the brick; a transverse extra-connection bus segment connecting two terminals situated on opposite longitudinal edges of the brick on a third axis; and two transverse intra-connection bus segments connecting circuits of the brick to respective terminals situated on the opposite longitudinal edges on a fourth axis symmetrical to the third axis with respect to the center of the brick. The bricks are oriented at 180° from one to the next in the direction of the columns and in the direction of the rows, and each brick comprises an even number of power supply conductor segments arranged symmetrically with respect to an axis of symmetry of the brick and connecting opposite edges of the brick.
Abstract:
A device, and a corresponding method of implementation, for SRAM memory information storage are provided. The device is powered by a supply voltage and includes an array of base cells organized in base columns, and at least one mirror column of at least one mirror cell liable to simulate the behavior of the cells in a base column. The device further includes Emulation means, in a mirror column, of the most restricting cell in a base column, Means for varying a mirror power supply voltage for the mirror column, and Means for copying the mirror power supply voltage in the emulated base column.