Abstract:
A liquid crystal display panel comprises a color filter substrate, a thin film transistor array substrate, and a liquid crystal layer sealed between the two substrates. The color filter substrate has a plurality of first spacers and a plurality of second spacers thereon. The thin film transistor array substrate has a plurality of recesses for containing the second spacers. The ratio of the number of the second spacers to the number of the first spacers is between about 10 and about 90.
Abstract:
A liquid crystal display panel and a liquid crystal display device incorporating the same are provided. The liquid crystal display panel includes a first substrate, a second substrate and a liquid crystal layer. The first substrate includes a first base, a dielectric layer and a storage capacitor. The storage capacitor includes a reflective electrode. The dielectric layer covers at least part of the storage capacitor. The second substrate is substantially paralleled to the first substrate. The second substrate includes a second base, a black matrix and a common electrode. The black matrix corresponds to the storage capacitor. The black matrix includes an opening corresponding to the reflective electrode. The opening is provided to let an outside light enter into the liquid crystal display panel such that the reflective electrode reflects the outside light to provide a light source to the liquid crystal display panel.
Abstract:
A method for transforming a first transport stream of a first format into a second transport stream of a second format includes deriving at least one program clock reference (PCR) value from the first transport stream, and calculating an arrival time stamp value according to the PCR value. In addition, the method further includes generating a header carrying at least the arrival time stamp value, and outputting the second transport stream. Additionally, the second transport stream comprises the header and a second packet corresponding to a first packet of the first transport stream.
Abstract:
A pixel electrode structure of a transflective liquid crystal display comprises a reflective electrode laid on a surface of the gate-insulating layer, a dielectric layer covering the reflective electrode, and a transmissive electrode on the dielectric layer and connected to the reflective electrode.
Abstract:
An liquid crystal method, system and method is provided to optimize the view-angle distribution characteristics of 2D/3D LCDs, wherein the photoactive layers, e.g., parallax, lenticular, etc, have their individual respective distances adjusted. The method also permits the adjustment of the relative prism vertex angles among the photoactive layers to further control the view-angle distribution of the light transmitted to the LDC display means. Moreover, the method, system and method provides for the enhanced, as modified by or in accordance with and as a function of both, scope and distance of human vision and vantage point in 2D/3D LCDs.
Abstract translation:提供了一种液晶方法,系统和方法来优化2D / 3D LCD的视角分布特性,其中诸如视差,透镜等的光活性层具有各自的各自的距离。 该方法还允许调节光敏层之间的相对棱镜顶角,以进一步控制透射到LDC显示装置的光的视角分布。 此外,该方法,系统和方法提供了在2D / 3D LCD中由人类视觉和有利位置的范围和距离进行修改或者根据和作为功能的增强。
Abstract:
A pixel electrode structure of a transflective liquid crystal display comprises a reflective electrode laid on a surface of the gate-insulating layer, a dielectric layer covering the reflective electrode, and a transmissive electrode on the dielectric layer and connected to the reflective electrode.
Abstract:
A pixel structure including a scan line, a data line, an active device, a shielding electrode, and a pixel electrode is provided on a substrate. The data line includes an upper conductive wire and a bottom conductive wire. The upper conductive wire is disposed over and across the scan line. The bottom conductive wire is electrically connected to the upper conductive wire. The active device is electrically connected to the scan line and the upper conductive wire. The shielding electrode is disposed over the bottom conductive wire. The pixel electrode disposed over the shielding electrode is electrically connected to the active device. In addition, parts of the pixel electrode and parts of the shielding electrode form a storage capacitor.
Abstract:
A liquid crystal display panel comprises a color filter substrate, a thin film transistor array substrate, and a liquid crystal layer sealed between the two substrates. The color filter substrate has a plurality of first spacers and a plurality of second spacers thereon. The thin film transistor array substrate has a plurality of recesses for containing the second spacers. The ratio of the number of the second spacers to the number of the first spacers is between about 10 and about 90.
Abstract:
A liquid crystal display panel and a liquid crystal display device incorporating the same are provided. The liquid crystal display panel includes a first substrate, a second substrate and a liquid crystal layer. The first substrate includes a first base, a dielectric layer and a storage capacitor. The storage capacitor includes a reflective electrode. The dielectric layer covers at least part of the storage capacitor. The second substrate is substantially paralleled to the first substrate. The second substrate includes a second base, a black matrix and a common electrode. The black matrix corresponds to the storage capacitor. The black matrix includes an opening corresponding to the reflective electrode. The opening is provided to let an outside light enter into the liquid crystal display panel such that the reflective electrode reflects the outside light to provide a light source to the liquid crystal display panel.
Abstract:
A three-dimensional (3D) display system includes a liquid crystal display and a directional backlight module. The backlight module disposed behind the liquid crystal display includes a light-guide plate, a focusing layer, a left backlight source, a right backlight source, and a first V-shaped micro-grooved and a second V-shaped micro-grooved structures of the light-guide plate. The focusing layer is disposed between the light-guide plate and the liquid crystal display. The 3D display method is to instantly switch on and off the left and the right backlight sources to alternately emit the light from the left side and right side of light-guide plate. By means of the first and the second V-shaped micro-grooved structure, the light transmitted from the light-guide plate is focused by the focusing layer within a particular range of angles and passing through the liquid crystal layer for being alternately projected to form a 3D image.