Abstract:
A method for performing orthogonal frequency division multiplexing (OFDM)/offset quantization amplitude modulation (OQAM) includes obtaining a data burst. The method includes performing weighted circularly convolved filtering modulation on the data burst to produce an output signal. The method further includes a first wireless device transmitting the output signal to a second wireless device. The second wireless device receives an input signal from the first wireless device, and the second wireless devices performs weighted circularly convolved demodulation filtering on the input signal to produce the data burst.
Abstract:
A method for operating a machine-type device (MTD) includes determining communications requirements for a machine-type device (MTD), and assigning a first signal waveform selected from a plurality of signal waveforms to the MTD in accordance with the determined communications requirements, wherein each signal waveform has an associated characteristic signal bandwidth.
Abstract:
Various disclosed embodiments include methods and systems for communication in a wireless communication system. A method comprises receiving a signal corresponding to a plurality of modulated signals, each of the plurality of modulated signals corresponding to a unique electronic device. The method comprises filtering the received signal with a plurality of filters, each of which is matched to a corresponding filter in a respective electronic device to obtain a filtered signal for the respective electronic device. The method comprises performing a fast Fourier transform (FFT) operation on the filtered signal to obtain demodulated data corresponding to the respective electronic device.
Abstract:
A method of designing a truncated filter includes designing a prototype filter with a target frequency response, and selecting a soft truncation function with a roll-off parameter specifying a rate in which the soft truncation function transitions to zero. The method also includes applying the soft truncation function to the prototype filter to produce a truncated filter, and storing the truncated filter to a memory.
Abstract:
A method for operating a receiving device includes determining reliability ratings for undecoded data streams in a received transmission, selecting an undecoded data stream in the received transmission in accordance with the determined reliability ratings, thereby producing a selected data stream, and decoding the selected data stream with a decoding trellis, thereby producing a data symbol. The method also includes updating the decoding trellis in accordance with the data symbol, and repeating the selecting, the decoding, and the updating for remaining undecoded data streams in the received transmission.
Abstract:
System and method embodiments are provided for open-loop spatial multiplexing for radio access virtualization. In an embodiment, a system includes a plurality of antenna ports and a processor coupled to the plurality of antenna ports and configured to spread a spreading sequence over at least a portion of the plurality of antenna ports in a spatial domain, wherein the processor is configured to cause the antenna ports to transmit multiple spreading sequences simultaneously by sequence superposition.
Abstract:
A method for performing orthogonal frequency division multiplexing (OFDM)-offset quantization amplitude modulation (OQAM) includes obtaining a data burst. The method includes performing weighted circularly convolved filtering modulation on the data burst to produce an output signal. The method further includes a first wireless device transmitting the output signal to a second wireless device. The second wireless device receives an input signal from the first wireless device, and the second wireless devices performs weighted circularly convolved demodulation filtering on the input signal to produce the data burst.
Abstract:
A unified frame structure for filter bank multi-carrier (FBMC) and orthogonal frequency division multiplexed (OFDM) waveforms may allow FBMC and OFDM frames to be communicated over a common channel without significant inter-frame gaps. The unified frame structure may set an FBMC frame duration to an integer multiple of an OFDM frame element duration to enable alignment of FBMC frames and OFDM frames in the time domain. The unified frame structure may also map control channels in the FBMC and OFDM frames to common resource locations so that the respective control channels are aligned in the time and/or frequency domains. The unified frame structure may also share synchronization channels between FBMC and OFDM frames. Additionally, overhead in an FBMC time division duplexed (TDD) communications channel can be reduced by overlapping time windows appended to FBMC blocks.
Abstract:
Embodiments are provided for early termination of an iterative process of determining channel directions and transmissions in multi-user multiple-input and multiple-output (MU-MIMO) communications systems. In an embodiment, a base station or a user equipment (UE) calculates a multi-user channel matrix using a first iteration of a null-space singular value decomposition (SVD) based iterative zero-forcing (I-ZF) algorithm for multi-user MU-MIMO. The base station or UE repeats updating the multi-user channel matrix using a next iteration of the algorithm and the multi-user channel matrix calculated in a previous iteration, until the diagonal elements of the multi-user channel matrix are greater than the off-diagonal elements by a predefined threshold. Upon determining that the diagonal elements are greater than the off-diagonal elements by the predefined threshold, a plurality of transmission signals are calculated using the last updated multi-user channel matrix.
Abstract:
A uniform feedback format mandates that mandates that DPS CSI, JT CSI, and CQI are reported irrespective of which transmission scheme was previously used to perform transmissions. The DPS CSI, JT CSI, and CQI are then used to select a transmission scheme from a group of candidate transmission schemes. The selected transmission scheme can be a CoMP transmission scheme.