Abstract:
A system and method for detecting movement of a vehicle and/or for changing operating modes of the vehicle switch between transitional operating mode of the vehicle at a first vehicle speed and a moving mode of the vehicle at a second vehicle speed. Movement of the vehicle is controlled to maintain a speed and/or location of the vehicle within designated limits during operation of the vehicle in the transitional operating mode. Movement of the vehicle is controlled to keep an operating parameter of the vehicle below a designated limit during operation of the vehicle in the moving mode. The vehicle switches between the transitional operating mode and the moving mode based at least in part on the vehicle speed, a distance from the target stopping location, an environmental condition, a vehicle characteristic, and/or a route occupancy condition.
Abstract:
A method (e.g., for monitoring a braking system of a vehicle system) includes monitoring fluid pressures of a braking system and modeled braking efforts of the braking system in a vehicle system traveling along a route, identifying one or more time periods at least one of before a brake event of the braking system or after the brake event, calculating residual forces exerted on the vehicle system during the one or more time periods, and determining at least one of an estimated braking effort of the braking system or an estimated propagation rate at which the estimated braking effort is applied by the braking system using the residual forces that are calculated.
Abstract:
A method includes identifying power outputs to be provided by propulsion-generating vehicles of a vehicle system for different locations along a route and calculating handling parameters of the vehicle system at the locations along the route. The handling parameters are representative of at least one of coupler forces, coupler energies, relative vehicle velocities, or natural forces exerted on the vehicle system. The method also includes determining asynchronous operational settings for the propulsion-generating vehicles at the locations. The asynchronous operational settings represent different operational settings that cause the propulsion-generating vehicles to provide at least the power outputs at the locations while changing the handling parameters of the vehicle system to designated values at the locations. The method further includes communicating the asynchronous operational settings to the propulsion-generating vehicles in order to cause the propulsion-generating vehicles to implement the asynchronous operational settings at the different locations.
Abstract:
A system (e.g., a control system) includes a sensor configured to monitor an operating condition of a vehicle system during movement of the vehicle system along a route. The system also includes a controller configured to designate one or more operational settings for the vehicle system as a function of time and/or distance along the route.
Abstract:
A system includes an energy management system disposed onboard a vehicle system configured to travel on a route during a trip. The energy management system is configured to receive trip information from a second vehicle system that includes one or more constraints including at least one of speed, distance, or time restrictions for the vehicle system along the route. The energy management system is further configured to generate a trip plan for controlling movement of the vehicle system along the route during the trip. The trip plan is generated based on the one or more constraints. The trip plan has a plan speed profile that designates speeds for the vehicle system according to at least one of distance or time during the trip. The energy management system is further configured to control movement of the vehicle system during the trip according to the plan speed profile of the trip plan.
Abstract:
A method includes identifying power outputs to be provided by propulsion-generating vehicles of a vehicle system for different locations along a route and calculating handling parameters of the vehicle system at the locations along the route. The handling parameters are representative of at least one of coupler forces, coupler energies, relative vehicle velocities, or natural forces exerted on the vehicle system. The method also includes determining asynchronous operational settings for the propulsion-generating vehicles at the locations. The asynchronous operational settings represent different operational settings that cause the propulsion-generating vehicles to provide at least the power outputs at the locations while changing the handling parameters of the vehicle system to designated values at the locations. The method further includes communicating the asynchronous operational settings to the propulsion-generating vehicles in order to cause the propulsion-generating vehicles to implement the asynchronous operational settings at the different locations.
Abstract:
A system (e.g., a control system) includes a sensor configured to monitor an operating condition of a vehicle system during movement of the vehicle system along a route. The system also includes a controller configured to designate one or more operational settings for the vehicle system as a function of time and/or distance along the route. The controller is configured to operate in a first operating mode responsive to the operating condition of the vehicle system being at least one of at or above a designated threshold, and in a second operating mode responsive to the operating condition of the vehicle system being below the designated threshold. The controller designates operational settings to drive the vehicle system toward achievement of a first objective when in the first operating mode and toward achievement of a different, second objective when in the second operating mode.
Abstract:
An energy management system and method for a vehicle system operate the vehicle system according to a current trip plan as the vehicle system travels along a route during a trip. The current trip plan designates operational settings of the vehicle system. The system and method also revise the current trip plan into a revised trip plan responsive to current, actual operation of the vehicle system differing from the current trip plan by at least a designated threshold amount. The revised trip plan designates operational settings of the vehicle system and includes an initial designated operational setting that matches the current, actual operation of the vehicle system.