Abstract:
The present disclosure relates to the reduction of pressure ulcers and falls with respect to patients with physical or cognitive impairments who are in bed. A control system assures that the bed and ancillary apparatus are physically set and that patient behaviors are responded to by care providers. Motion is monitored with a non-mutually exclusive portfolio of sensors, and this information is used by one or more reasoning engines. An integrated clinical workflow is informed by the patterns of movement and then the physical environment, patient interaction, and care provider workflow are controlled to reduce the incidence of falls and pressure ulcers in bed ridden patients.
Abstract:
The present disclosure relates to cell processing techniques. By way of example, a cell processing system may include a plurality of sample processing devices configured to process patient samples and a plurality of readers respectively associated with the plurality of sample processing devices, wherein each reader is configured to read information from tracking devices associated with respective patient samples. The system may also include a controller that uses information from the readers to provide an estimated completion time for a patient sample based on availability of the sample processing devices.
Abstract:
A method of providing a first set of computer systems with access to a recommendation pertaining to operation of one or more assets based on the one or more assets being in revenue service or in repair is disclosed. Operations data and inspection data is collected at the first set of computer systems. The operations data and inspection data pertains to operating asset states of one or more fleets of aircraft over a time period. The operations data and the inspection data is stored in one or more databases of a second set of computer systems. Assumptions of control input values are derived for use by the first set of computer systems based on the operations data and the inspection data. A financial objective and constraints analysis is performed with a simulation system for one or more assets of the one or more fleets of aircraft. The cost savings analysis includes identifying a modification of at least one of a set of the control input values. An estimated reduction of forecast error related to operating and service costs is computed for the one or more assets over one or more time periods. The identifying is based on comparisons of a first subset of the operations data and the inspection data with a second subset of the operations data and the inspection data. The first set of computer systems is provided with access to the recommendation pertaining to operation of the one or more assets.
Abstract:
An example method includes: classifying lung function risk based on patient attributes and a clinical protocol; generating alarms and incentives for compliance with the clinical protocol based on patient attributes, clinical protocol, and patient lung function risk; determining an orientation and position of a clinical device based on tagged feature(s) of the clinical device compared to identified patient feature(s); monitoring patient interaction with the clinical device; identifying a deviation from the clinical protocol based on the monitored patient interaction, a patient biometric indicator, and a desired setpoint state in the protocol; when a deviation is identified, providing feedback proportional to the deviation, the feedback including an adjustment with respect to the clinical protocol and/or the clinical device; and triggering at least one alarm and/or incentive based on deviation and feedback, wherein the alarm/incentives differs based on whether and to what extent deviation is identified and feedback.
Abstract:
An example method includes: classifying lung function risk based on patient attributes and a clinical protocol; generating alarms and incentives for compliance with the clinical protocol based on patient attributes, clinical protocol, and patient lung function risk; determining an orientation and position of a clinical device based on tagged feature(s) of the clinical device compared to identified patient feature(s); monitoring patient interaction with the clinical device; identifying a deviation from the clinical protocol based on the monitored patient interaction, a patient biometric indicator, and a desired setpoint state in the protocol; when a deviation is identified, providing feedback proportional to the deviation, the feedback including an adjustment with respect to the clinical protocol and/or the clinical device; and triggering at least one alarm and/or incentive based on deviation and feedback, wherein the alarm/incentives differs based on whether and to what extent deviation is identified and feedback.
Abstract:
Aspects of the present disclosure involve a system comprising a computer-readable storage medium storing at least one program, and a method for generating optimal power plant decommissioning plans based on stakeholder constraints. In example embodiments, the method may include receiving one or more constraints for determining a power plant decommissioning plan. The method further includes accessing decommissioning strategy data representing a plurality of possible decommissioning plans, and generating a decommissioning plan in accordance with the constraints based on the decommissioning strategy data. The method may further include causing presentation of a user interface on a client device that includes a graphical representation of the power plant decommissioning plan.
Abstract:
Certain examples provide systems and methods to monitor and control hospital operational systems based on occupancy data and medical orders. An example healthcare workflow management and reasoning system includes a workflow engine including a first particularly programmed processor to monitor one or more medical orders from one or more hospital information systems to identify a condition indicating that a first patient in a first room is ready for a clinical activity such as discharge. The example healthcare workflow management and reasoning system includes a sensing component including a second processor to gather occupancy data regarding the first patient in the first room and transmit the occupancy data to the workflow engine. The example workflow engine controls one or more hospital operational systems to trigger cleaning of the first room, lighting settings for the first room, and transportation of a second patient to the first room based on occupancy data from the sensing component.
Abstract:
An example method includes: classifying lung function risk based on patient attributes and a clinical protocol; generating alarms and incentives for compliance with the clinical protocol based on patient attributes, clinical protocol, and patient lung function risk; determining an orientation and position of a clinical device based on tagged feature(s) of the clinical device compared to identified patient feature(s); monitoring patient interaction with the clinical device; identifying a deviation from the clinical protocol based on the monitored patient interaction, a patient biometric indicator, and a desired setpoint state in the protocol; when a deviation is identified, providing feedback proportional to the deviation, the feedback including an adjustment with respect to the clinical protocol and/or the clinical device; and triggering at least one alarm and/or incentive based on deviation and feedback, wherein the alarm/incentives differs based on whether and to what extent deviation is identified and feedback.
Abstract:
A system for building a vehicle system determines cargo and vehicles to carry the cargo from a first location to a second location via one or more vehicle yards disposed between the locations. One or more characteristics of the vehicle yards are determined, as well as different builds of the vehicle system based on the cargo, the vehicle units, and the characteristics of the vehicle yards. The different builds designate different combinations of where the first cargo is carried in a vehicle system that includes the vehicle units and/or where the vehicle units are located relative to each other in the vehicle system. A build of the vehicle system is selected from among the different builds for forming the vehicle system according to the build in order to reduce the time spent handling or processing the vehicle system at another vehicle yard.
Abstract:
Systems, methods, and apparatus to dynamically manage interdependent, variable scheduled procedures are provided. An example method includes calculating a cumulative distribution function (CDF) for task(s) in a healthcare protocol based on a probability density function associated with task duration(s) for the task(s). The method includes determining a plurality of schedule risk states for each task in a healthcare protocol, each schedule risk state associated with an upper specification limit (USL) and a lower specification limit (LSL) along the CDF. The method includes identifying, within USL and LSL for each schedule risk state, setpoint(s) associated with probability(-ies) along the CDF. The method includes monitoring execution of task(s) in the healthcare protocol to identify a transition in schedule risk state according to USL and LSL. The method includes triggering an action to react to an actual or upcoming change in schedule risk state based on setpoint(s) associated with the schedule risk state.