Abstract:
A hazardous gas detection system includes a first and second plurality of air sampling ports in fluid communication with an exhaust duct of a gas turbine enclosure. The first and second plurality of air sampling ports is fluidly connected to a first and second outlet orifice respectfully. A primary sensor is in fluid communication with the first outlet orifice and a secondary sensor is in fluid communication with the second outlet orifice. The primary and secondary sensors generate signals indicative of hazardous gas concentrations in first and second aggregated exhaust air samples. A computing device monitors the hazardous gas concentrations, monitors functionality of the primary and secondary sensors and generates a command signal indicating an operating mode for the gas turbine based on at least one of the hazardous gas concentrations in the first and second aggregated exhaust air samples and the functionality of the primary and secondary sensors.
Abstract:
The present application provides a fuel conditioning system for delivering a flow of fuel to a nozzle in a gas turbine engine. The fuel conditioning system may include a fuel compressor to increase the pressure of the flow of fuel, a pressure reduction valve to decrease the pressure of the flow of fuel, and a heater downstream of the pressure reduction valve. The pressure reduction valve may include a rotary control valve.
Abstract:
A hazardous gas detection system includes a first and second plurality of air sampling ports in fluid communication with an exhaust duct of a gas turbine enclosure. The first and second plurality of air sampling ports is fluidly connected to a first and second outlet orifice respectfully. A primary sensor is in fluid communication with the first outlet orifice and a secondary sensor is in fluid communication with the second outlet orifice. The primary and secondary sensors generate signals indicative of hazardous gas concentrations in first and second aggregated exhaust air samples. A computing device monitors the hazardous gas concentrations, monitors functionality of the primary and secondary sensors and generates a command signal indicating an operating mode for the gas turbine based on at least one of the hazardous gas concentrations in the first and second aggregated exhaust air samples and the functionality of the primary and secondary sensors.
Abstract:
A water delivery system for a gas turbine compressor having a plurality of blade stages positioned about a rotating shaft is provided. The plurality of blade stages are configured to compress an airflow. The water delivery system includes a nozzle system to inject water between at least one pair of the plurality of blade stages; and a controller controlling whether the water injected by the nozzle system is injected at a first pressure that augments power output during an operation mode of the plurality of blade stages and a second, lower pressure that washes at least some of blades of the plurality of blade stages during a wash mode of the plurality of blade stages.
Abstract:
A method of operating a fuel heating system is provided. The method includes performing pre-ignition diagnostic checks on a plurality of components of the fuel heating system, wherein at least one inlet damper and at least one outlet damper of an exhaust flow circuit are each in a closed position. The method also includes purging the fuel heating system of unburned hydrocarbons. The method further includes operating the fuel heating system in a normal operating condition. The method yet further includes operating the fuel heating system in a cool down condition, wherein the at least one inlet damper is in the closed position.
Abstract:
Embodiments of the present disclosure provide cooling systems for turbomachinery and methods of installation. In an embodiment, an apparatus of the present disclosure can include a ventilation conduit for routing a cooling air from a compressor of a power generation system to a turbine component of the power generation system; and a nozzle in fluid communication with the ventilation conduit, wherein the nozzle delivers water from a water supply into the ventilation conduit.
Abstract:
Embodiments of the present disclosure provide cooling systems for turbomachinery and methods of installation. In an embodiment, an apparatus of the present disclosure can include a ventilation conduit for routing a cooling air from a compressor of a power generation system to a turbine component of the power generation system; and a nozzle in fluid communication with the ventilation conduit, wherein the nozzle delivers water from a water supply into the ventilation conduit.
Abstract:
A mounting adaptor for mounting a transmitter to a valve manifold includes a base portion having a first side and a second side, the first side having a flat surface. Also included is a connector portion having a threaded external surface, the connector portion operatively coupled to, and extending away from, the second side of the base portion. Further included is at least one through hole defined by the base portion, the at least one through hole extending from the first side to the second side and configured to mount the mounting adaptor to the valve manifold.
Abstract:
A fuel supply system includes a main fuel line path configured to route a fuel to a combustion inlet region and a secondary fuel line path fluidly coupled to the main fuel line path. The secondary fuel line path is configured to divert a portion of the fuel from the main fuel line path through a first segment of the secondary fuel line path and return the fuel to the main fuel line path through a second segment of the secondary fuel line path. An obstruction mechanism is located proximate the main fuel line path at an obstruction location and is configured to cyclically translate into the main fuel line path to cyclically alter a cross-sectional area of the main fuel line path to effectively oscillate fuel flow pressure into a combustion system.
Abstract:
The present application provides an inlet bleed heat system for supplying a flow of bleed air to a flow of incoming air into a compressor of a gas turbine engine. The inlet bleed heat system may include an air knife and a silencer panel. The air knife may include a compressor bleed air port in communication with the flow of bleed air and a discharge gap to discharge the flow of bleed air into the flow of incoming air. The air knife may and the silencer panel may form an integrated air knife/silencer panel.