Abstract:
A system includes a turbine combustor, a turbine driven by combustion products from the turbine combustor, and an exhaust gas compressor. The exhaust compressor is configured to compress and route an exhaust gas from the turbine to the turbine combustor. The system also includes an exhaust gas recirculation (EGR) path extending through the exhaust gas compressor, the turbine combustor, and the turbine, a first exhaust gas (EG) extraction port disposed along the EGR path, and a second EG extraction port disposed along the EGR path.
Abstract:
A turbine blade having an airfoil defined by a concave shaped pressure side outer wall and a convex shaped suction side outer wall that connect along leading and trailing edges and, therebetween, form a radially extending chamber for receiving the flow of a coolant. The turbine blade may further include a rib configuration that partitions the chamber into radially extending flow passages. The rib configuration may include a camber line rib having a wavy profile. The wavy profile may include at least one back-and-forth “S” shape.
Abstract:
A control method for optimizing a turndown operation for a power plant having a plurality of generating units. The plurality of generating units each may include either an on-condition or an off-condition during a selected operating period. The method may include: defining competing operating modes, wherein the competing operating modes include different possible combinations regarding which of the plurality of generating units have the on-condition and which have the off-condition during the selected operating period; defining multiple cases for each of the competing operating modes, wherein the multiple cases include varying a value of an operating parameter; receiving performance objectives that include a cost function; receiving an ambient conditions forecast; for the multiple cases of the competing operating modes, simulating the turndown operation with a power plant model given the value of the operating parameter and the ambient conditions forecast; evaluating a simulation result pursuant to the cost function so to select therefrom a preferred case.
Abstract:
A control method for optimizing or enhancing an operation of a power plant that includes thermal generating units for generating electricity. The power plant may include multiple possible operating modes differentiated by characteristics of operating parameters. The method may include tuning a power plant model so to configure a tuned power plant model. The method may further include simulating proposed operating modes of the power plant with the tuned power plant model. The simulating may include a simulation procedure that includes: defining a second operating period; selecting the proposed operating modes from the possible operating modes; with the tuned power plant model, performing a simulation run for each of the proposed operating modes whereby the operation of the power plant during the second operating period is simulated; and obtaining simulation results from each of the simulation runs.
Abstract:
Systems and methods for power plant data reconciliation are provided. According to one embodiment of the disclosure, a system may include a controller and a processor in communication with the controller. The processor may be configured to run a power plant under a plurality of operational conditions. While the power plant is running, the processor may be configured to automatically collect operational data associated with the power plant. The collected data may be stored in a predefined location. Furthermore, the processor may be configured to select stable data from the operational data to coincide with output data associated with a power plant model. One or more parameters of the power plant model may be modified, and at least one difference may be minimized between the output data associated with the power plant model and a measured value in the power plant operational data. At least one control action for a power plant component using the power plant model may be determined
Abstract:
A control method for optimizing an operation of a power plant having generating units during a selected operating period subdivided so to include regular intervals within which each of the generating units comprises one of an on-condition and an off-condition. The control method may include: determining a preferred case for each of the competing operating modes for the intervals; based upon the preferred cases, selecting proposed turndown operating sequences for the selected operating period; determining a shutdown operation for each of the generating units comprising the off-condition for one or more intervals during the selected operating period and, therefrom, calculating a shutdown economic outcome; determining a turndown operation for each of the generating units comprising the on-condition for one or more intervals during the selected operating period and, therefrom, calculating a turndown economic outcome; calculating a sequence economic outcome for each of the proposed turndown operating sequences; and comparing the sequence economic outcomes.
Abstract:
A control method for optimizing or enhancing an operation of a power plant that includes thermal generating units for generating electricity. The power plant may include multiple possible operating modes differentiated by characteristics of operating parameters. The method may include tuning a power plant model so to configure a tuned power plant model. The method may further include simulating proposed operating modes of the power plant with the tuned power plant model. The simulating may include a simulation procedure that includes: defining a second operating period; selecting the proposed operating modes from the possible operating modes; with the tuned power plant model, performing a simulation run for each of the proposed operating modes whereby the operation of the power plant during the second operating period is simulated; and obtaining simulation results from each of the simulation runs.
Abstract:
A control method for optimizing a turndown operation for a power plant having a plurality of generating units. The plurality of generating units each may include either an on-condition or an off-condition during a selected operating period. The method may include: defining competing operating modes, wherein the competing operating modes include different possible combinations regarding which of the plurality of generating units have the on-condition and which have the off-condition during the selected operating period; defining multiple cases for each of the competing operating modes, wherein the multiple cases include varying a value of an operating parameter; receiving performance objectives that include a cost function; receiving an ambient conditions forecast; for the multiple cases of the competing operating modes, simulating the turndown operation with a power plant model given the value of the operating parameter and the ambient conditions forecast; evaluating a simulation result pursuant to the cost function so to select therefrom a preferred case.
Abstract:
A control method for optimizing an operation of a power plant fleet. The power plant fleet may include multiple operating configurations differentiated by a manner in which assets are engaged. The method may include the steps of: sensing and collecting measured values of the operating parameters for the operating of each of the assets; tuning asset models so to configure a tuned asset model for each of the assets; simulating proposed operating configurations of the power plant fleet using the tuned asset models; and obtaining simulation results from each of the simulation runs, each of the simulation results including a predicted value for a performance indicator.
Abstract:
A turbine blade that includes an airfoil defined by a concave shaped pressure side outer wall and a convex shaped suction side outer wall that connect along leading and trailing edges and, therebetween, form a radially extending chamber for receiving the flow of a coolant. The turbine blade may further include a rib configuration that partitions the chamber into radially extending flow passages, and a blade outer shell that defines an outer surface of the airfoil. The rib configuration is a non-integral component to the blade outer shell.