Abstract:
Protic-soluble electrochromic materials, ion-paired electrochromic materials including protic-soluble electrochromic materials, as well as electrochromic media and electrochromic devices incorporating such materials, are provided. The use of protic solvent mixtures, especially mixtures incorporating water, allows for the use of a wider variety of substrate materials. For example, plastics that may be soluble in organic aprotic solvent systems may be used in water-based devices.
Abstract:
An electrochromic device including a first substantially transparent substrate having an electrically conductive material associated therewith; a second substrate having an electrically conductive material associated therewith; and an electrochromic medium contained within a chamber positioned between the first and second substrates which includes: at least one solvent; at least one anodic electroactive material; at least one cathodic electroactive material; wherein at least one of the anodic and cathodic electroactive materials is electrochromic; and a creep resistant crosslinked polyelectrolyte gel matrix.
Abstract:
An energy storage device includes a cathodic material in an activated state; and an anodic material in an activated state; wherein: the cathodic material is a viologen covalently attached to, or confined within, a first polymer matrix, the first polymer matrix is configured to prevent or minimize substantial diffusion of the cathodic material in the activated state; and the anodic material is a phenazine, a phenothiazine, a triphenodithiazine, a carbazole, a indolocarbazole, a biscarbazole, or a ferrocene covalently attached to, or confined within, a second polymer matrix, the second polymer matrix is configured to prevent or minimize substantial diffusion of the anodic material in the activated state.
Abstract:
An electrochromic device including a first substantially transparent substrate having an electrically conductive material associated therewith; a second substrate having an electrically conductive material associated therewith; and an electrochromic medium contained within a chamber positioned between the first and second substrates which includes: at least one solvent; at least one anodic electroactive material; at least one cathodic electroactive material; wherein at least one of the anodic and cathodic electroactive materials is electrochromic; and a creep resistant crosslinked polyelectrolyte gel matrix.
Abstract:
An anodic redox species including a phenazine compound that is substituted with at least one sterically hindered group and an electrochromic device using these chemical compounds are disclosed.
Abstract:
An anodic redox species and a device using the chemical compound are disclosed. The device may comprise a first substrate, a second substrate, a first electrode, a second electrode, and/or an electrochromic medium. The second substrate may be disposed in a spaced apart relationship with the first substrate. The first electrode may be associated with the first substrate. The second electrode may likewise associated with the second substrate. The electrochromic medium may be disposed between the first and second electrodes. Further, the electrochromic medium may comprise at least one anodic redox species and at least one cathodic redox species. Lastly, the anodic redox species is a species of a formula whose compounds may have improved oxidation potentials.
Abstract:
An electro-optic cell for an electrochromic device includes an electrochromic medium including an electrochromic compound M having at least one reduced state and at least one oxidized state. The electrochromic compound M can act as both the anodic material and the cathodic material in the electro-optic cell. The electrochromic medium can be capable of reversibly attenuating transmittance of light having a wavelength within a predetermined range.
Abstract:
An energy storage device includes a cathodic material in an activated state; and an anodic material in an activated state; wherein: the cathodic material is a viologen covalently attached to, or confined within, a first polymer matrix, the first polymer matrix is configured to prevent or minimize substantial diffusion of the cathodic material in the activated state; and the anodic material is a phenazine, a phenothiazine, a triphenodithiazine, a carbazole, a indolocarbazole, a biscarbazole, or a ferrocene covalently attached to, or confined within, a second polymer matrix, the second polymer matrix is configured to prevent or minimize substantial diffusion of the anodic material in the activated state.
Abstract:
Protic-soluble electrochromic materials, ion-paired electrochromic materials including protic-soluble electrochromic materials, as well as electrochromic media and electrochromic devices incorporating such materials, are provided. The use of protic solvent mixtures, especially mixtures incorporating water, allows for the use of a wider variety of substrate materials. For example, plastics that may be soluble in organic aprotic solvent systems may be used in water-based devices.
Abstract:
An energy storage device includes a cathodic material in an activated state; and an anodic material in an activated state; wherein: the cathodic material is a viologen covalently attached to, or confined within, a first polymer matrix, the first polymer matrix is configured to prevent or minimize substantial diffusion of the cathodic material in the activated state; and the anodic material is a phenazine, a phenothiazine, a triphenodithiazine, a carbazole, a indolocarbazole, a biscarbazole, or a ferrocene covalently attached to, or confined within, a second polymer matrix, the second polymer matrix is configured to prevent or minimize substantial diffusion of the anodic material in the activated state.