Abstract:
Device structures and fabrication methods for a field-effect transistor. A semiconductor fin includes a first section and a second section in a lengthwise arrangement, a first gate structure overlapping the first section of the semiconductor fin, and a second gate structure overlapping the second section of the semiconductor fin. A pillar is arranged in the first section of the semiconductor fin. The pillar extends through a height of the semiconductor fin and across a width of the semiconductor fin.
Abstract:
First and second fin-type field effect transistors (finFETs) are formed laterally adjacent one another extending from a top surface of an isolation layer. The first finFET has a first fin structure and the second finFET has a second fin structure. An insulator layer is on the first fin structure and the second fin structure. A gate conductor intersects the first fin structure and the second fin structure, and at least the insulator layer separates the gate conductor from the first fin structure and the second fin structure. Source and drain structures are on the first fin structure and the second fin structure laterally adjacent the gate conductor. The first fin structure has sidewalls that include a step and the second fin structure has sidewalls that do not include the step. The step is approximately parallel to the surface of the isolation layer.
Abstract:
At least one method, apparatus and system providing semiconductor devices with relatively short gate heights but without a relatively high risk of contact-to-gate shorts. In embodiments, the method, apparatus, and system may provide contact formation by way of self-aligned contact processes.
Abstract:
Disclosed herein is a method of forming a CMOS integrated circuit product (comprised of first and second opposite type transistors) that includes forming a first spacer proximate both the first and second gate structures, forming an initial second spacer proximate the first spacer of the first transistor and a layer of second spacer material above the second transistor, and forming first raised epi semiconductor material source/drain regions for the first transistor. Thereafter, performing a first surface oxidation process so as to selectively form a hydrophilic material on exposed surfaces of the first raised epi semiconductor material and performing an etching process on both the transistors so as to remove the initial second spacer and the layer of second spacer material.