Abstract:
A dielectric material stack including at least a via level dielectric material layer, at least one patterned etch stop dielectric material portion, a line level dielectric material layer, and optionally a dielectric cap layer is formed over a substrate. At least one patterned hard mask layer including a first pattern can be formed above the dielectric material stack. A second pattern is transferred through the line level dielectric material layer employing the at least one etch stop dielectric material portion as an etch stop structure. The first pattern is transferred through the line level dielectric material layer employing the at least one etch stop dielectric material portion as an etch stop structure while the second pattern is transferred through the via level dielectric material layer to form integrated line and via trenches, which are filled with a conductive material to form integrated line and via structures.
Abstract:
A method for depositing a conductor in the via opening electronic structure removes the via bottom liner so that the conductor deposited in the via opening directly contacts the underlying conductive layer. The method includes depositing amorphous silicon over the dielectric layer and the liner layer on the via opening sidewalls and bottom. The amorphous silicon extends substantially over the entire via opening while leaving below a void within the via opening. The amorphous silicon over the via opening and on the via opening bottom and the liner layer on the via opening bottom are anisotropically etched to leave a layer of amorphous silicon over the dielectric layer and the via opening side walls. The amorphous silicon is then removed to form a via opening having a substantially open-bottom liner. The conductor is then deposited in the via opening and contacts the underlying conductive layer.