Abstract:
The invention relates to transferring, in one exposure, a single-mask feature to form two features on an underlying material. Specifically, a doubled walled structure (i.e. a center opening flanked by adjacent openings) is formed. Advantageously, the openings may be sub-resolution openings. The center opening may be a line flanked by two other lines. The center opening may be circular and surrounded by an outer ring, thus forming a double wall ring structure. In an electronic fuse embodiment, the double wall ring structure is a via filled with a conductor that contacts a lower and upper level metal. In deep trench embodiment, the double wall ring structure is a deep trench in a semiconductor substrate filled with insulating material. In such a way the surface area of the trench is increased thereby increasing capacitance.
Abstract:
High density capacitor structures based on an array of semiconductor nanorods are provided. The high density capacitor structure can be a plurality of capacitors in which each of the semiconductor nanorods serves as a bottom electrode for one of the plurality of capacitors, or a large-area metal-insulator-metal (MIM) capacitor in which the semiconductor nanorods serve as a support structure for a bottom electrode of the MIM capacitor subsequently formed.
Abstract:
The invention relates to transferring, in one exposure, a single-mask feature to form two features on an underlying material. Specifically, a doubled walled structure (i.e. a center opening flanked by adjacent openings) is formed. Advantageously, the openings may be sub-resolution openings. The center opening may be a line flanked by two other lines. The center opening may be circular and surrounded by an outer ring, thus forming a double wall ring structure. In an electronic fuse embodiment, the double wall ring structure is a via filled with a conductor that contacts a lower and upper level metal. In deep trench embodiment, the double wall ring structure is a deep trench in a semiconductor substrate filled with insulating material. In such a way the surface area of the trench is increased thereby increasing capacitance.
Abstract:
The invention relates to transferring, in one exposure, a single-mask feature to form two features on an underlying material. Specifically, a doubled walled structure (i.e. a center opening flanked by adjacent openings) is formed. Advantageously, the openings may be sub-resolution openings. The center opening may be a line flanked by two other lines. The center opening may be circular and surrounded by an outer ring, thus forming a double wall ring structure. In an electronic fuse embodiment, the double wall ring structure is a via filled with a conductor that contacts a lower and upper level metal. In deep trench embodiment, the double wall ring structure is a deep trench in a semiconductor substrate filled with insulating material. In such a way the surface area of the trench is increased thereby increasing capacitance.
Abstract:
A dielectric material stack including at least a via level dielectric material layer, at least one patterned etch stop dielectric material portion, a line level dielectric material layer, and optionally a dielectric cap layer is formed over a substrate. At least one patterned hard mask layer including a first pattern can be formed above the dielectric material stack. A second pattern is transferred through the line level dielectric material layer employing the at least one etch stop dielectric material portion as an etch stop structure. The first pattern is transferred through the line level dielectric material layer employing the at least one etch stop dielectric material portion as an etch stop structure while the second pattern is transferred through the via level dielectric material layer to form integrated line and via trenches, which are filled with a conductive material to form integrated line and via structures.
Abstract:
An organic material layer is lithographically patterned to include a linear array portion of lines and spaces. In one embodiment, the organic material layer can be an organic planarization layer that is patterned employing a photoresist layer, which is consumed during patterning of the organic planarization layer. Volume expansion of the organic planarization layer upon exposure to a halogen-including gas causes portions of the linear array to collapse at random locations. In another embodiment, the height of the photoresist layer is selected such that the linear array portion of the photoresist layer is mechanically unstable and produces random photoresist collapses. The pattern including random modifications due to the collapse of the organic material layer is transferred into an underlying layer to generate an array of conductive material lines with random electrical disruption of shorts or opens. The structure with random shorts can be employed as a physical unclonable function.
Abstract:
A method including forming a first via opening in a substrate, the first via opening is self-aligned to a first trench in the substrate, forming a second via opening in the substrate, the second via opening is self-aligned to a second trench in the substrate, a portion of the second via opening overlaps a portion of the first via opening to form an overlap region, and the overlap region having a width (w) equal to or greater than a space (s) between the first trench and the second trench, and removing a portion of the substrate in the overlap region to form a bridge opening, the bridge opening is adjacent to the first and second via openings and extends between the first and second trenches.
Abstract:
A patterning scheme to minimize dry/wet strip induced device degradation and resultant devices are provided. The method includes removing a workfunction material over a first device area of a structure, while protecting the workfunction material over a second device area of the structure with a first masking material. The method further includes applying a second masking material over the first device area and the first masking material. The method further includes removing the first masking material and the second masking material until the workfunction material is exposed over the second device area.
Abstract:
A curable liquid formulation comprising: (i) one or more near-infrared absorbing polymethine dyes; (ii) one or more crosslinkable polymers; and (iii) one or more casting solvents. The invention is also directed to solid near-infrared absorbing films composed of crosslinked forms of the curable liquid formulation. The invention is also directed to a microelectronic substrate containing a coating of the solid near-infrared absorbing film as well as a method for patterning a photoresist layer coated on a microelectronic substrate in the case where the near-infrared absorbing film is between the microelectronic substrate and a photoresist film.
Abstract:
After forming a plurality of metal anchors arranged in a matrix of rows and columns and a plurality trenches separating adjacent rows of metal anchors on a substrate, a dispersion comprising charged single-wall carbon nanotubes (SWCNTs) having a surface binding group on each end of the charged SWCNTs is directed to flow through the plurality of trenches. During the flow process, one end of each of the charged SWCNTs binds to a corresponding metal anchor through a surface binding group. An electric field is then applied to align the charged SWCNTs parallel to lengthwise directions of the plurality of trenches such that another end of the each of the SWCNTs binds to an adjacent metal anchor through another surface binding group. The aligned charged SWCNTs can be used as conducting channels for field effect transistors (FETs).