Abstract:
Approaches for utilizing laser annealing to optimize lithographic processes such as directed self assembly (DSA) are provided. Under a typical approach, a substrate (e.g., a wafer) will be subjected to a lithographic process (e.g., having a set of stages/phases, aspects, etc.) such as DSA. Before or during such process, a set of laser annealing passes/scans will be made over the substrate to optimize one or more of the stages. In addition, the substrate could be subjected to additional processes such as hotplate annealing, etc. Still yet, in making a series of laser annealing passes, the techniques utilized and/or beam characteristics of each pass could be varied to further optimize the results.
Abstract:
Methods for fabricating integrated circuits using directed self-assembly to form via and contact holes are disclosed. An exemplary method includes determining a natural, hexagonal separation distance L0 between cylinders formed in a block copolymer (BCP) material during directed self-assembly (DSA) and determining an integrated circuit feature pitch PA according to the following formula: PA=L0*(sqrt(3)/2)*n, wherein n is a positive integer. The method further includes generating an integrated circuit layout design better accommodating the natural formation arrangement of polymeric cylinders, wherein integrated circuit features are spaced in accordance with the integrated circuit feature pitch PA and wherein via or contact structures are physically and electrically connected to the integrated circuit features and fabricating the integrated circuit features and the via or contact structures on a semiconductor work-in-process (WIP) in accordance with the integrated circuit layout design, wherein the via or contact structures are fabricated utilizing DSA with BCP material.
Abstract:
Methods for directed self-assembly (DSA) using chemoepitaxy in the design and fabrication of integrated circuits are disclosed herein. An exemplary method includes forming an A or B-block attracting layer over a base semiconductor layer, forming a trench in the A or B-block attracting layer to expose a portion of the base semiconductor layer, and forming a neutral brush or mat or SAMs layer coating within the trench and over the base semiconductor layer. The method further includes forming a block copolymer layer over the neutral layer coating and over the A or B-block attracting layer and annealing the block copolymer layer to form a plurality of vertically-oriented, cylindrical structures within the block copolymer layer.
Abstract:
Methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes surface treating exposed portions of an anti-reflective coating (ARC) that overlie a semiconductor substrate to form surface treated ARC portions. A neutral layer is formed overlying the anti-reflective coating including over the surface treated ARC portions. First portions of the neutral layer are selectively removed and second portions of the anti-reflective coating that are disposed under the first portions laterally adjacent to the surface treated ARC portions are exposed to define a guide pattern. A block copolymer layer is deposited overlying the guide pattern. The block copolymer layer is phase separated to define a nanopattern that is registered to the guide pattern.