Abstract:
A semiconductor device is provided for implementing at least one logic element. The semiconductor device includes a semiconductor substrate with a first transistor and a second transistor formed on the semiconductor substrate. Each of the transistors comprises a source, a drain, and a gate. A trench silicide layer electrically connects one of the source or the drain of the first transistor to one of the source or the drain of the second transistor.
Abstract:
Methods for a low voltage antifuse device and the resulting devices are disclosed. Embodiments may include forming a plurality of fins above a substrate, removing a portion of a fin, forming a fin tip, forming a first area of a gate oxide layer above at least the fin tip, forming a second area of the gate oxide layer above a remaining portion of the plurality of fins, wherein the first area is thinner than the second area, and forming a gate over at least the fin tip to form an antifuse one-time programmable device.
Abstract:
Methods for forming a variable fin FinFET cell wherein a plurality of fins is formed above a substrate, a portion of a fin is removed, forming a fin tip, a first area of a gate oxide layer is formed above the fin tip, and a second area of the gate oxide layer is formed above at least a remaining portion of the plurality of fins, wherein the first area is thicker than the second area.
Abstract:
One method disclosed herein includes performing at least one common process operation to form a plurality of first gate structures for each of a plurality of field effect transistors and a plurality of second gate structures above a region where a bipolar transistor will be formed and performing an ion implantation process and a heating process to form a continuous doped emitter region that extends under all of the second gate structures. A device disclosed herein includes a first plurality of field effect transistors with first gate structures, a bipolar transistor that has an emitter region and a plurality of second gate structures positioned above the emitter region, wherein the bipolar transistor comprises a continuous doped emitter region that extends laterally under all of the plurality of second gate structures.