Abstract:
A vehicle that includes an engine, an exhaust system, and a controller, and a method are disclosed herein. The exhaust system includes a passage for directing the exhaust gas stream from the engine through the series of exhaust after-treatment devices, including a selective-catalytic reduction device and a diesel particulate filter (DPF). The exhaust after-treatment devices are employed to reduce various exhaust emissions of the engine. The exhaust system, may however, prematurely return failing emissions results due to the amount of contaminants that have flowed through the exhaust system since the last regeneration even of the particulate filter. Therefore, the controller may, via the present method, alter the threshold of the SCR efficiency diagnostic due to contaminants accumulated on the DPF and selectively enable or disable the diagnostic based on a set of recorded instructions, to improve the robustness of the SCR efficiency diagnostic and prevent inaccurate failing emissions results.
Abstract:
A method of increasing a weighting factor of an exponentially weighted moving averaging (“EWMA”) filter is provided. The method includes monitoring a data stream containing raw data values, and determining an EWMA value based on the data stream by an electronic control module. The method includes determining if the EWMA value is between a predetermined maximum fault threshold value and a predetermined minimum fault threshold value. The method includes increasing the weighting factor of the EWMA filter to more heavily weigh incoming raw data values of the data stream based on the difference between the first raw data value and a previously calculated filtered value exceeding the calibration value.
Abstract:
Embodiments of the invention include a method for performing diagnostics of a selective catalytic reduction (“SCR”) device in an exhaust gas treatment system of an internal combustion engine. The method includes monitoring an amount of sulfur in the SCR device of the exhaust treatment system and monitoring, by an SCR diagnostics module, an efficiency of the SCR device and indicating when the efficiency of the SCR device falls below an efficiency diagnostics threshold. Based on determining that the amount of sulfur in the SCR device is above a first threshold, the method includes disabling an operation of the SCR diagnostics module.
Abstract:
An oxidation catalyst (OC)/hydrocarbon injector (HCI) testing system includes a controller having a first oxygen sensor input configured and disposed to receive a first oxygen sensor value upstream of an oxidation catalyst (OC) device and a second oxygen sensor input configured to receive a second oxygen sensor value downstream of the OC device. The controller is configured and disposed to perform a first test to detect one of a faulty OC device and a faulty HCI based on a difference between the first and second oxygen sensor values.
Abstract:
A dosing control system for an exhaust system includes: a reductant fluid tank operable to contain a reductant solution comprising urea; an injector disposed in operable communication between a reductant tank and an SCR apparatus, the injector being operable to inject the reductant solution from the reductant tank into a flow of exhaust upstream of the SCR apparatus; a urea quality sensor (UQS) configured and disposed to sense a concentration of the urea in the reductant solution; and, a control module disposed in signal communication with the UQS and in operable communication with the injector, the control module being operable to adjust a dosing of the reductant solution injected by the injector based on a concentration of the urea in the reductant solution.
Abstract:
An exhaust treatment system includes a particulate filter having a filter substrate configured to trap soot contained in exhaust gas. A regeneration system is configured to perform a regeneration operation that regenerates the particulate filter by burning away soot stored in the filter substrate. A control module is in electrical communication with the regeneration system to generate a first control signal that initiates the regeneration operation based on a comparison between at least one operating condition of the exhaust treatment system and a threshold value. The control module generates a second control signal in response to detecting at least one diagnostic signal. The second control signal initiates the regeneration operation independently of the comparison.
Abstract:
A system and method for initiating an engine after-run state and controlling a nitrogen oxide sensor self-diagnostic tool are provided. The system may include an internal combustion engine, an exhaust system, a selective catalytic reduction (SCR) device and at least two NOx sensors to measure the efficiency of the SCR device and a controller or host machine. The controller, via the present method, executes a first control action to disable the self-diagnostic tool when one of an occurrence of a particulate filter regeneration event and a non-occurrence of a calibration threshold is detected. The controller executes a second control action, initiating an engine after-run state and enabling the self-diagnostic tool when one of a non-occurrence of a particulate filter regeneration event and an occurrence of the calibration threshold is detected.
Abstract:
A monitoring system for a single can oxidation catalyst (OC)/particulate filter (PF) member includes a controller including a first temperature sensor input configured to receive a first exhaust temperature upstream of an OC portion of the single can OC/PF member, a second temperature sensor input configured to receive a second exhaust temperature downstream of the first temperature. The controller is configured and disposed to calculate an exothermic capacity of the OC portion and determine washcoat deterioration of a PF portion of the single can OC/PF member based on the exothermic capacity of the OC portion.
Abstract:
A vehicle that includes an engine, an exhaust system, and a controller, and a method are disclosed herein. The exhaust system includes a passage for directing the exhaust gas stream from the engine through the series of exhaust after-treatment devices, including a selective-catalytic reduction device and a diesel particulate filter (DPF). The exhaust after-treatment devices are employed to reduce various exhaust emissions of the engine. The exhaust system, may however, prematurely return failing emissions results due to the amount of contaminants that have flowed through the exhaust system since the last regeneration even of the particulate filter. Therefore, the controller may, via the present method, alter the threshold of the SCR efficiency diagnostic due to contaminants accumulated on the DPF and selectively enable or disable the diagnostic based on a set of recorded instructions, to improve the robustness of the SCR efficiency diagnostic and prevent inaccurate failing emissions results.
Abstract:
An oxidation catalyst (OC)/hydrocarbon injector (HCI) testing system includes a controller having a first oxygen sensor input configured and disposed to receive a first oxygen sensor value upstream of an oxidation catalyst (OC) device and a second oxygen sensor input configured to receive a second oxygen sensor value downstream of the OC device. The controller is configured and disposed to perform a first test to detect one of a faulty OC device and a faulty HCI based on a difference between the first and second oxygen sensor values.