Abstract:
A method for diagnosing an Oxidation Catalyst (OC) device of an exhaust gas treatment system is provided. The method monitors a differential temperature across the OC device. The method determines whether the differential temperature reveals a temperature spike. The method determines that the OC device operates properly in response to determining that the differential temperature reveals a temperature spike.
Abstract:
A method is disclosed for controlling regeneration in a diesel engine after-treatment system having a diesel oxidation catalyst (DOC) and a diesel particulate filter (DPF). The method includes injecting an amount of fuel into an exhaust gas flow upstream of the DOC to superheat the gas flow and assessing a rate of the warm-up of the DOC. The method also includes determining, in response to the assessed rate of the warm-up of the DOC, an amount of catalyst substance available in the DOC for catalyzing the exhaust gas flow. The method additionally includes reducing the amount of fuel injected into the DOC such that the determined available amount of catalyst substance is utilized in the DOC for catalyzing the exhaust gas flow and a predetermined amount of fuel is permitted to slip through the DOC to maintain regeneration temperature in the DPF. A system and a vehicle are also disclosed.
Abstract:
A method for particulate filter performance monitoring in an exhaust gas treatment system is provided. The method includes monitoring a current received from a soot sensor in the exhaust gas treatment system and comparing the current to a soot sensor current threshold. Based on determining that the current is greater than or equal to the soot sensor current threshold, an accumulated engine out soot value is compared to an accumulated engine out soot threshold. A particulate filter fault is set based on determining that the accumulated engine out soot value is less than the accumulated engine out soot threshold. A monitoring system and an exhaust gas treatment system of an engine are also provided.
Abstract:
A monitoring system for a single can oxidation catalyst (OC)/particulate filter (PF) member includes a controller including a first temperature sensor input configured to receive a first exhaust temperature upstream of an OC portion of the single can OC/PF member, a second temperature sensor input configured to receive a second exhaust temperature downstream of the first temperature. The controller is configured and disposed to calculate an exothermic capacity of the OC portion and determine washcoat deterioration of a PF portion of the single can OC/PF member based on the exothermic capacity of the OC portion.
Abstract:
A method is disclosed for regulating an exhaust after-treatment (AT) system for a diesel engine. The method includes detecting the engine's cold start when the engine's exhaust gas flow directed into the AT system is at a temperature below a threshold value. The method also includes determining flow-rates of the engine's exhaust gas and its fuel supply. The method additionally includes determining a magnitude of exhaust gas energy using the determined exhaust gas flow-rates and the fuel supply over an elapsed time following the cold start. The method also includes integrating a detected temperature of the exhaust gas over the elapsed time and comparing the determined magnitude of exhaust gas energy with the integrated temperature. Furthermore, the method includes regulating operation of the AT system using the determined exhaust gas temperature when the determined magnitude of exhaust gas energy is within a predetermined value of the integrated exhaust gas temperature.
Abstract:
A method is disclosed for controlling a diesel engine equipped with a diesel particulate filter (DPF). The method includes detecting steady state operation of the engine generating a first flow rate of particulate matter (PM) directed into the DPF. The method also includes, during the steady state operation, triggering exhaust gas recirculation to the engine and thereby directing a second PM flow rate that is greater than the first flow rate into the DPF. The method additionally includes detecting a PM flow rate exiting the DPF in response to the second PM flow rate directed into the DPF. The method also includes comparing the detected PM flow rate exiting the DPF with a PM flow rate threshold. Furthermore, the method includes regulating injection of fuel to regenerate the DPF, if the detected PM flow rate exiting the DPF is greater than the PM flow rate threshold.
Abstract:
A method of increasing a weighting factor of an exponentially weighted moving averaging (“EWMA”) filter is provided. The method includes monitoring a data stream containing raw data values, and determining an EWMA value based on the data stream by an electronic control module. The method includes determining if the EWMA value is between a predetermined maximum fault threshold value and a predetermined minimum fault threshold value. The method includes increasing the weighting factor of the EWMA filter to more heavily weigh incoming raw data values of the data stream based on the difference between the first raw data value and a previously calculated filtered value exceeding the calibration value.
Abstract:
A diagnostic module for diagnosing a particulate matter sensor in a vehicle includes a sensor mode selection module, a heater power detector, and a protection tube diagnostic module. The sensor mode selection module selects a regeneration mode for the particulate matter sensor from among a plurality of operation modes. The regeneration mode regenerates the particulate matter sensor. The heater power detector determines a voltage output based on a voltage applied to the particulate matter sensor. The voltage output corresponds to operation of the particulate matter sensor in the selected mode. The protection tube diagnostic module performs a diagnostic of the particulate matter sensor. The protection tube diagnostic module selectively diagnoses a fault in the particulate matter sensor based on the voltage output determined during the regeneration mode and a regeneration power threshold.
Abstract:
A method is disclosed for regulating an exhaust after-treatment (AT) system for a diesel engine. The method includes detecting the engine's cold start when the engine's exhaust gas flow directed into the AT system is at a temperature below a threshold value. The method also includes determining flow-rates of the engine's exhaust gas and its fuel supply. The method additionally includes determining a magnitude of exhaust gas energy using the determined exhaust gas flow-rates and the fuel supply over an elapsed time following the cold start. The method also includes integrating a detected temperature of the exhaust gas over the elapsed time and comparing the determined magnitude of exhaust gas energy with the integrated temperature. Furthermore, the method includes regulating operation of the AT system using the determined exhaust gas temperature when the determined magnitude of exhaust gas energy is within a predetermined value of the integrated exhaust gas temperature.
Abstract:
A dosing control system for an exhaust system of an engine includes: a tank containing a reductant solution having urea; an injector operable to inject the reductant solution into an exhaust flow upstream of an SCR apparatus; first and second NOx sensors disposed to sense NOx emissions in the exhaust flow upstream and downstream, respectively, of the SCR apparatus; and a control module. The control module is disposed in signal communication with the first and second NOx sensors and in operable communication with the injector, the control module being operable to set an original dosing level and decrease a dosing of the reductant solution injected by the injector based on a determination from signals received from the first and second NOx sensors that a reduction in a conversion efficiency of the SCR apparatus below a defined level of conversion efficiency has occurred.