Abstract:
The disclosure includes a system and method for detecting fine grain copresence between users. The system includes a processor and a memory storing instructions that when executed cause the system to: process one or more signals to determine coarse grain location information of a first device and a second device; determine whether the first device and the second device are copresent based on the coarse grain location information; in response to determining that the first device and the second device are copresent based on the coarse grain location information, transmit a signal to the second device to alert the second device to listen for a fine grain copresence token from the first device; and refine copresence based on receiving an indication that the second device has received the fine grain copresence token.
Abstract:
Example methods and systems for determining media files based on activity levels are described. An example method includes receiving information indicative of a first speed of the computing device, and receiving information indicative of a geography of a location of the computing device. The method further includes determining, from a plurality of media files tagged with respective tempo identifiers, a first media file based on the geography of the location of the computing device and also having a tempo that substantially matches to the first speed of the computing device. The method includes providing an indication of the first media file to a media player, and based on a change in the first speed of the computing device to a second speed, determining from the plurality of media files tagged with respective tempo identifiers, a second media file having a tempo that substantially matches to the second speed.
Abstract:
Example methods and systems for determining media files based on activity levels are described. An example method includes receiving information indicative of a first speed of the computing device, and receiving information indicative of a geography of a location of the computing device. The method further includes determining, from a plurality of media files tagged with respective tempo identifiers, a first media file based on the geography of the location of the computing device and also having a tempo that substantially matches to the first speed of the computing device. The method includes providing an indication of the first media file to a media player, and based on a change in the first speed of the computing device to a second speed, determining from the plurality of media files tagged with respective tempo identifiers, a second media file having a tempo that substantially matches to the second speed.
Abstract:
Methods and systems for grouping computing devices together based on the devices being colocated with one another or being associated with complementary usage contexts, and then using the location or usage context of one device in the group to estimate the location or usage context of another device in the group are described. An example method may include receiving first sensor data from sensors of a first computing device; receiving second sensor data from sensors of a second computing device; determining, based on the received sensor data, that the first and second computing devices are colocated with one another; identifying, based on the first sensor data, a context associated with the first computing device; and determining, based at least in part on the context associated with the first computing device, a context associated with the second computing device.
Abstract:
The subject matter of this specification can be implemented in, among other things, a method for determining a wireless access point location. The method includes a step for receiving session data from at least one mobile device, wherein each instance of the received session data includes one or more global positioning system (GPS) data points, one or more sensor data points, and one or more WiFi scan data points, wherein the one or more WiFi scan data points are associated with one or more wireless access points (WAPs). The method also includes a step for calculating a location of at least one of the one or more WAPs using at least a portion from each of the received one or more global positioning system (GPS) data points, the one or more sensor data points, and the one or more WiFi scan data points.
Abstract:
In one example, a method includes determining, by a processor operating in a first power mode and based on first motion data, a first activity of a user, transitioning from operating in the first power mode to operating in a second power mode, wherein the processor consumes less power while operating in the second power mode than in the first power mode, responsive to determining, while the processor is operating in the second power mode and based on second motion data, that a change in an angle relative to gravity satisfies a threshold, transitioning from operating in the second power mode to operating in the first power mode, determining, by the processor and based on second motion data, a second activity of the user, and, responsive to determining that the second activity is different from the first activity, performing an action.
Abstract:
Methods and systems for grouping computing devices together based on the devices being colocated with one another or being associated with complementary usage contexts, and then using the location or usage context of one device in the group to estimate the location or usage context of another device in the group are described. An example method may include receiving first sensor data from sensors of a first computing device; receiving second sensor data from sensors of a second computing device; determining, based on the received sensor data, that the first and second computing devices are colocated with one another; identifying, based on the first sensor data, a context associated with the first computing device; and determining, based at least in part on the context associated with the first computing device, a context associated with the second computing device.
Abstract:
Systems and methods are provided for estimating the locations and coverage ranges of wireless transmission stations based on the existing location and coverage range data. The system divides the transmitting stations into a plurality of pairs and estimates new coverage range and location for each transmitting station in each pair based on confidence level, distance to another transmitting station in the same pair and coverage range overlap with other transmitting stations. Systems and methods are provided to estimate the location and accuracy range of the location of a client device based on the intersections of the coverage ranges of wireless transmission stations detected by the client device. The system repeatedly removes the transmission station with fewer number of intersections from further process if the number of intersections for each remaining transmission station is not the same.
Abstract:
Example methods and systems for determining media files based on activity levels are described. An example method includes receiving information indicative of a first speed of the computing device, and receiving information indicative of a geography of a location of the computing device. The method further includes determining, from a plurality of media files tagged with respective tempo identifiers, a first media file based on the geography of the location of the computing device and also having a tempo that substantially matches to the first speed of the computing device. The method includes providing an indication of the first media file to a media player, and based on a change in the first speed of the computing device to a second speed, determining from the plurality of media files tagged with respective tempo identifiers, a second media file having a tempo that substantially matches to the second speed.
Abstract:
Conducting hands-free transactions comprises a server at a payment processing system, a user computing device, and a merchant computing device. The payment processing system registers a merchant system as a hands-free payment participant and provides a beacon identifier. The payment processing system receives a communication from a hands-free payment application on a user computing device, the communication comprising a transaction token, an identification of a user account, and the beacon identifier received by the user computing device via a wireless communication from a device associated with the merchant system and transmits the transaction token to the merchant system computing device. The payment processing system receives from the merchant system computing device, a transaction request, the transaction request comprising the token and transaction data associated with the transaction request and conducts the transaction between the user account and the merchant system based on the received token and transaction request.