Abstract:
An aspect of the present invention is an energy storage device including an electrode assembly that has a negative electrode and a positive electrode, where the negative electrode contains a negative electrode substrate and a negative active material, and has a negative active material layer disposed in an unpressed shape along at least one surface of the negative electrode substrate, the negative active material includes solid graphite particles as a main component, and the solid graphite particles have an aspect ratio of 1 or more and 5 or less.
Abstract:
An energy storage device includes a metal case which houses an electrode assembly therein, and an insulation sheet mounted on a portion of an outer surface of the case. The case includes a projecting portion which extends in a thickness direction of the insulation sheet along an edge surface of at least a portion of the insulation sheet, and a distal end of the projecting portion projects from the insulation sheet.
Abstract:
An energy storage device includes: a first guide portion which is arranged in the inside of a case and allows an electrolyte solution to flow toward one end of an electrode assembly in a winding axis direction from an electrolyte solution pouring hole; and a second guide portion which is arranged in the inside of the case and allows a fluid to flow toward the electrolyte solution pouring hole from the inside of the case, and which prevents the electrolyte solution from flowing toward the other end of the electrode assembly in the winding axis direction from the electrolyte solution pouring hole or suppresses the electrolyte solution from flowing toward the other end of the electrode assembly in the winding axis direction from the electrolyte solution pouring hole.
Abstract:
An energy storage apparatus includes: an energy storage device including a flat electrode assembly in which electrodes are layered and a prismatic case in which the electrode assembly is housed; and a spacer arranged adjacently to the energy storage device in a first direction, wherein the spacer is formed such that a thickness size in the first direction of a center portion of the spacer in a second direction, which is a direction orthogonal to the first direction and is a direction parallel to a surface of the spacer that faces the energy storage device, is set larger than a thickness size in the first direction of other portions of the spacer arranged adjacently to the center portion of the spacer in the second direction, and a width of the center portion of the spacer in a third direction orthogonal to the first and second directions at a contact portion of the spacer with the energy storage device is set smaller than a width of the case in the third direction.
Abstract:
Provided is an electric storage device including: a first electrode plate; a second electrode plate having a polarity opposite to that of the first electrode plate; and a separator interposed between the first electrode plate and the second electrode plate, wherein the first electrode plate includes a current collector and a mixture layer laminated onto the current collector, the mixture layer contains at least one of the binder and the conductive additive, primary particles of an active material, and secondary particles each having a hollow region formed therein by aggregation of a plurality of the primary particles, and the at least one of the binder and the conductive additive is partially distributed in the hollow region.
Abstract:
An electric storage device includes: a rolled electrode assembly 10 formed by winding a positive electrode, a negative electrode, and a separator so as to have curved portions and linear portions; current collectors 7; and an electrolyte solution 3. A positive electrode substrate has at one end 10A an unformed portion 11E formed without a positive electrode mixture layer, and a negative electrode substrate has at the other end 10B an unformed portion 13E formed without a negative electrode mixture layer. The current collectors 7 are connected respectively to at least part of the linear portions in the unformed portion of the positive electrode at the one end 10A and that of the negative electrode at the other end 10B. The one end 10A in the positive electrode has a length greater than the winding length, and/or the other end 10B in the negative electrode has such a length.