Abstract:
Systems for examining a route inject one or more electrical examination signals into a conductive route from onboard a vehicle system traveling along the route, detect one or more electrical characteristics of the route based on the one or more electrical examination signals, and detect a break in conductivity of the route responsive to the one or more electrical characteristics decreasing by more than a designated drop threshold for a time period within a designated drop time period. Feature vectors may be determined for the electrical characteristics and compared to one or more patterns in order to distinguish between breaks in the conductivity of the route and other causes for changes in the electrical characteristics.
Abstract:
A computer-implemented method for monitoring characteristic data includes selecting a first operable system device and receiving a first plurality of data from the first operable system device. The first plurality of data represents at least one characteristic of the first operable system device at a first plurality of points in time. The method also includes determining whether the first plurality of data is useful. If the data is useful, the method also includes receiving a second plurality of data from the first operable system device, the second plurality of data represents at least one characteristic of the first operable system device at a second plurality of points in time, wherein the second plurality of points in time is substantially larger than the first plurality of points in time. If the data is not useful, the method further includes selecting a second operable system device.
Abstract:
A system and method for contactless handprint capture is disclosed that includes an image capture device to capture handprint images of a subject hand at each of a plurality of different focal distances, with the image capture device including an imaging camera and an electro-optics arrangement having a plurality of light modulating elements and polarization sensitive optical elements having differing optical path lengths based on polarization states. A control system is coupled to the image capture device to cause the device to capture the handprint images at each of the different focal distances, with each handprint image having a depth-of-focus that overlaps with a depth-of-focus of handprint images at adjacent focal distances such that redundant handprint image data is captured. The control system registers each handprint image with positional data and creates a composite handprint image from the handprint images captured at the different focal distances.
Abstract:
Systems and methods for estimating when an engine event occurs is described. The system includes a controller configured to receive a first signal from at least one knock sensor coupled to a combustion engine, receive a second signal from at least one engine crankshaft sensor coupled to the combustion engine, transform the first and second signals into a plurality of feature vectors using a multivariate transformation algorithm, determine an expected window of an engine event with a statistical model, center a segment of the plurality of feature vectors around the expected window, estimate, using the statistical algorithm, a time in the expected window corresponding to when the engine event occurred, and adjust operation of the combustion engine based on the time.
Abstract:
The approaches presently disclosed provide for fault-interpretation in a seismic volume with computer assistance, allowing automatic or semi-automatic determination of a fault surface and associated displacement across the fault. The present fault interpretation approach uses pattern matching algorithms and does not require prior interpretation of the stratigraphic horizons. In certain implementations the fault interpretation approach estimates the 3D fault surface as part of a joint fault surface location and displacement optimization process.
Abstract:
An image capture device includes an electro-optics arrangement having an arrangement of polarizers, polarization sensitive optical elements, and polarization modulating elements. First and second polarization sensitive optical elements are provided having an edge displaced relative to a plane normal to an optical axis of the electro-optics arrangement. A control system coupled to the electro-optics arrangement controls the application of voltages to the polarization modulating elements to control the polarization rotation of the light input to the polarization sensitive optical elements, such that the optical path length of the polarization sensitive optical elements is changed to provide for capture of the object images at each of the different focal planes. The first and second polarization sensitive optical elements generate lateral image shifts between respective object images captured at the different focal planes responsive to the polarization rotation of the light input thereto.
Abstract:
A method for detecting anomalies during operation of an asset to improve performance of the asset includes collecting, via a server, data relating to operation of the asset or a group of assets containing the asset. The data includes normal and abnormal asset behavior of the asset or the group of assets containing the asset. Further, the method includes automatically removing, via an iterative algorithm programmed in the server that utilizes one or more inputs or outputs of an anomaly detection analytic, portions of the data containing the abnormal asset behavior to form a dataset containing only the normal asset behavior. The method also includes training, via a computer-based model programmed in the server, the anomaly detection analytic using, at least, the dataset containing only the normal asset behavior. Moreover, the method includes applying, via the server, the anomaly detection analytic to the asset so as to monitor for anomalies during operation thereof.
Abstract:
A method for operating a wind turbine includes determining one or more loading and travel metrics or functions thereof for one or more components of the wind turbine during operation of the wind turbine. The method also includes generating, at least in part, at least one distribution of cumulative loading data for the one or more components using the one or more loading and travel metrics during operation of the wind turbine. Further, the method includes applying a life model of the one or more components to the at least one distribution of cumulative loading data to determine an actual damage accumulation for the one or more components of the wind turbine to date. Moreover, the method includes implementing a corrective action for the wind turbine based on the damage accumulation.
Abstract:
A method for detecting damage in a bearing coupled to a rotating shaft of a rotary machine includes receiving one or more measurement signals from one or more first sensors for monitoring movement of the rotating shaft in one or more directions over a time period. The method also includes removing an effect of one or more environmental and/or operating conditions of the rotary machine from the one or more measurement signals over the time period. After removing, the method includes analyzing changes in the one or more measurement signals from the one or more first sensors, wherein changes in the one or more measurement signals above a predetermined threshold or of a certain magnitude are indicative of a damaged bearing. Moreover, the method includes implementing a corrective action when the changes in the one or more measurement signals are above the predetermined threshold.
Abstract:
A method for evaluating performance of a wind turbine includes operating the wind turbine in a first operational mode. The method also includes generating a first set of operational data relating to the first operational mode. More specifically, the first set of operational data includes, at least, a first parameter and a second parameter. Further, the first and second parameters of the first set are measured during different time periods during the first operational mode. The method further includes changing the first operational mode to a second operational mode. Moreover, the method includes generating a second set of operational data relating to the second operational mode. The second set of operational data also includes, at least, a first parameter and a second parameter. Thus, the method includes determining a performance characteristic of the first and second operational modes based on the first and second sets of operational data.