Abstract:
Systems and methods of monitoring a power system power converter are provided herein. The system includes a plurality of parallel-coupled power converters comprising a power converter input and a power converter output, the power converter output configured to be coupled to a load, each power converter of the plurality of parallel-coupled power converters comprising a power converter controller. The power converter controller is configured to compare an output current of a corresponding power converter to a predetermined output current threshold, monitor the output current for a predetermined time duration when the output current is below the predetermined output current threshold, and shut down the corresponding power converter when the output current is below the predetermined output current threshold for the predetermined time duration.
Abstract:
Systems and methods of monitoring a power system power converter are provided herein. The system includes a plurality of parallel-coupled power converters comprising a power converter input and a power converter output, the power converter output configured to be coupled to a load, each power converter of the plurality of parallel-coupled power converters comprising a power converter controller. The power converter controller is configured to compare an output current of a corresponding power converter to a predetermined output current threshold, monitor the output current for a predetermined time duration when the output current is below the predetermined output current threshold, and shut down the corresponding power converter when the output current is below the predetermined output current threshold for the predetermined time duration.
Abstract:
A power converter and method of operating the same for use in a power conversion system capable of receiving power from various sources, including renewable sources, for application to a load. Power type detection circuitry is provided for identifying the type of power source at the input of each power detector, based on attributes of the time-varying power received. The power converter is constructed of a boost stage followed by a galvanically isolated DC-DC converter stage. If a renewable input power source is detected, the boost stage is controlled to operate at a maximum power point, and the DC-DC converter stage is operated in an open loop manner. If the AC grid is detected as the input power source, the boost stage is controlled to attain maximum power factor, and the DC-DC converter stage is placed under feedback control of the output voltage. Operating modes are also switched in response to low load demand.
Abstract:
Methods and systems for calibrating an inductor-inductor-capacitor (LLC) resonant converter are provided herein. The method includes calculating input voltage mathematically as a function of at least one of an output voltage, a load current, and tolerances of components of the LLC resonant converter and operating the LLC resonant converter in an open loop mode at a nominal resonant frequency. The method also includes measuring output voltage of the LLC resonant converter and comparing the measured output voltage to the calculated input voltage.
Abstract:
A power distribution rack includes a chassis that defines a first slot and a second slot adjacent the first slot. The power distribution rack also includes a plurality of electronics modules including a first module coupled within the first slot and a second module coupled within the second slot. A central bus bar assembly is coupled to the chassis and includes an outer bus bar including a first flange, a second flange, and a first bus plate extending therebetween. The first and second flanges and the first bus plate define a first channel. The bus bar assembly further includes an inner bus bar coupled within the first channel. The inner bus bar includes a third flange, a fourth flange, and a second bus plate extending therebetween. The first and third flanges are coupled to the first module and the second and fourth flanges are coupled to the second module.
Abstract:
A system is provided. The system includes a plurality of uninterruptible power supplies (UPSs), a ring bus, a plurality of chokes, each choke of said plurality of chokes electrically coupled between a respective UPS of said plurality of UPSs and the ring bus, and a plurality of series compensators, each series compensator of the plurality of series compensators electrically coupled between an associated choke of the plurality of chokes and the ring bus.
Abstract:
A power distribution rack includes a chassis that defines a first slot and a second slot adjacent the first slot. The power distribution rack also includes a plurality of electronics modules including a first module coupled within the first slot and a second module coupled within the second slot. A central bus bar assembly is coupled to the chassis and includes an outer bus bar including a first flange, a second flange, and a first bus plate extending therebetween. The first and second flanges and the first bus plate define a first channel. The bus bar assembly further includes an inner bus bar coupled within the first channel. The inner bus bar includes a third flange, a fourth flange, and a second bus plate extending therebetween. The first and third flanges are coupled to the first module and the second and fourth flanges are coupled to the second module.
Abstract:
A power converter and method of operating the same for use in a power conversion system capable of receiving power from various sources, including renewable sources, for application to a load. Power type detection circuitry is provided for identifying the type of power source at the input of each power detector, based on attributes of the time-varying power received. The power converter is constructed of a boost stage followed by a galvanically isolated DC-DC converter stage. If a renewable input power source is detected, the boost stage is controlled to operate at a maximum power point, and the DC-DC converter stage is operated in an open loop manner. If the AC grid is detected as the input power source, the boost stage is controlled to attain maximum power factor, and the DC-DC converter stage is placed under feedback control of the output voltage. Operating modes are also switched in response to low load demand.