摘要:
A method for performing mass analysis with dynamic mass resolution, in which a time-varying notch filtered broadband voltage signal (sometimes denoted as a time-varying "filtered noise" signal) is applied to a quadrupole mass filter. The time-varying filtered noise signal can consist of a rapid sequence of static (time-invariant) filtered noise signals, each defining a notch having a selected width and center location. The invention facilitates performance of mass analysis over a wide range of ion mass-to-charge ratios ("mass ranges") with adequate mass resolution. By appropriately choosing the width of each notch in the applied time-varying filtered noise, mass analysis can be performed with substantially constant mass separation over a wide mass range. In order to maintain substantially constant mass separation while analyzing a selected consecutive or non-consecutive sequence of ions (by passing such sequence of ions through the mass filter), the applied filtered noise should have narrower notches at times when ions with higher mass-to-charge ratio are to be selected, and wider notches at times when ions with lower mass-to-charge ratio are to be selected.
摘要:
A mass spectrometry method in which notch-filtered noise is applied to an ion trap to resonate all ions except selected ions out of the region of the trapping field. Preferably, the trapping field is a quadrupole trapping field defined by a ring electrode and a pair of end electrodes positioned symmetrically along a z-axis, and the filtered noise is applied to the ring electrode to eject unwanted ions in radial directions rather than toward a detector mounted along the z-axis. Also preferably, the trapping field has a DC component selected so that the trapping field has both a high frequency and low frequency cutoff, and is incapable of trapping ions with resonant frequency below the low frequency cutoff or above the high frequency cutoff. Application of the filtered noise signal to such a trapping field is functionally equivalent to filtration of the trapped ions through a notched bandpass filter having such high and low frequency cutoffs. Application of filtered noise in accordance with the invention avoids accumulation of contaminating ions during the process of storing desired parent ions, and permits ejection of unwanted ions in directions away from an ion detector to enhance the detector's operating life and rapid ejection of unwanted ions having mass-to-charge ratio below a minimum value, above a maximum value, and outside a window determined by the filtered noise signal.
摘要:
A method for generating a filtered noise signal, which includes the steps of generating a broadband signal having optimized (reduced or minimized) dynamic range, and filtering the broadband signal in a notch filter to generate a broadband signal whose frequency-amplitude spectrum has one or more notches (the "filtered noise" signal). In preferred embodiments, the filtered noise signal is a voltage signal suitable for application to an ion trap during a mass spectrometry operation. The invention enables rapid generation of different filtered noise signals (for use in different mass spectrometry experiments) by filtering a single, optimized broadband signal using a set of different notch filters, each having a simple, easily implementable design. The invention enables rapid generation of filtered noise signals (for example, in real time during mass spectrometry experiments) without prior knowledge of the mass spectrum of unwanted ions to be ejected from a trap during application of the filtered noise signal to the trap. The invention also enables rapid generation of a filtered noise signal having no missing frequency components outside the notches of the notch filter employed to generate the filtered noise signal. Digital values indicative of the amplitude, frequency, and phase of each sinusoidal (or other periodic) component of an optimized broadband signal can be iteratively generated by a digital computer in accordance with the invention, and the digital values can then be processed to generate an analog version of the optimized broadband signal.
摘要:
A mass spectrometry method in which an improved field comprising two or more trapping fields having substantially identical spatial form is established and at least one parameter of the improved field is changed to excite selected trapped ions sequentially, for example for detection. The improved field can also include a supplemental field of different spatial form. The changing improved field can sequentially eject selected ones of the trapped ions from the improved field for detection (or other purposes). An improved field comprising two quadrupole trapping fields can be established in a region defined by the ring and end electrodes of a three-dimensional quadrupole ion trap, and the amplitude of an RF (and/or DC) component (and/or the frequency of the RF component) of one or both trapping fields can be changed to sequentially excite trapped ions. Alternatively, a trapping field capable of storing ions having mass to charge ratio within a selected range is established, a supplemental field is superimposed with the trapping field to eject unwanted ions having mass-to-charge ratio within a second selected range from the improved field, the supplemental field having frequency components in one frequency range from a first frequency up to a notch frequency band and in another frequency range from the notch frequency band up to second frequency, and an improved field is then established by superimposing the trapping field with a second trapping field of substantially identical spatial form. Preferably, the relative phase of two or more component fields of the improved field is controlled to achieve an optimal combination of mass resolution, sensitivity, and mass peak stability.
摘要:
A method for generating a filtered noise signal, which includes the steps of generating a broadband signal having optimized (reduced or minimized) dynamic range, and filtering the broadband signal in a notch filter to generate a broadband signal whose frequency-amplitude spectrum has one or more notches (the "filtered noise" signal). In preferred embodiments, the filtered noise signal is a voltage signal suitable for application to an ion trap during a mass spectrometry operation. The invention enables rapid generation of different filtered noise signals (for use in different mass spectrometry experiments) by filtering a single, optimized broadband signal using a set of different notch filters, each having a simple, easily implementable design. The invention enables rapid generation of filtered noise signals (for example, in real time during mass spectrometry experiments) without prior knowledge of the mass spectrum of unwanted ions to be ejected from a trap during application of the filtered noise signal to the trap. The invention also enables rapid generation of a filtered noise signal having no missing frequency components outside the notches of the notch filter employed to generate the filtered noise signal. Digital values indicative of the amplitude, frequency, and phase of each sinusoidal (or other periodic) component of an optimized broadband signal can be iteratively generated by a digital computer in accordance with the invention, and the digital values can then be processed to generate an analog version of the optimized broadband signal.
摘要:
A mass spectrometry method in which a trapping field signal (such as a three-dimensional quadrupole trapping field signal or other multipole trapping field signal) set to store ions of interest is superimposed with a notch-filtered broadband ("filtered noise") signal, and ions are formed or injected in the resulting combined field. The filtered noise signal resonates all ions (except selected ones of the ions) from the combined field, so that only selected ones of the ions remain trapped in the combined field. The combined filtered noise and trapping field signal (the "combined signal") is then changed to excite the trapped ions sequentially, so that the excited ions can be detected sequentially. The invention can be applied to perform an (MS).sup.n or CI, or combined CI/(MS).sup.n, mass spectrometry operation.
摘要:
A mass spectrometry method in which a supplemental AC voltage signal having at least one high power frequency component, and at least one low power frequency component, is applied to an ion trap. Each high power component has an amplitude sufficiently large to eject one or more selected ions from the trap, by resonantly exciting the ions. Each low power component has an amplitude sufficient to induce dissociation (or reaction) of one or more selected ions, but insufficient to resonate the ions for detection. The frequency (or band of frequencies) of each high and low power frequency component is selected to match a resonance frequency of ions having a desired mass-to-charge ratio. Each low power component is applied for the purpose of inducing dissociation or reaction of specific trapped ions, which may be parent, daughter, reagent, or product ions, and each high power component is applied to eject undesired products of each such dissociation or reaction process from the trap. In accordance with the invention, a supplemental voltage signal having appropriately selected high and low power frequency components is applied to a trap during an (MS).sup.n or CI, or combined CI/(MS).sup.n, mass spectrometry operation.
摘要:
A mass spectrometry method and apparatus in which trapped ions of interest are detected as they strike a detector comprising at least one of the electrodes which establish the ion trapping field. The invention eliminates the need to eject ions from the trap, and thus eliminates the need to perforate one or more of the trap electrodes. In one class of preferred embodiments, the trapping field is a three-dimensional quadrupole trapping field within a region bounded by a ring electrode and a pair of end electrodes. In one embodiment, the inventive in-trap detector is a trap electrode composed (or partially composed) of phosphorescent material which emits photons in response to incidence of ions at its inward-facing surface (the surface of the electrode which faces the trap region). In another embodiment, the in-trap ion detector is a Faraday effect detector which includes an electrically isolated conductive pin mounted with its tip flush with the inward-facing surface of one of the trap electrodes.
摘要:
A mass spectrometry method in which an improved field comprising two or more trapping fields having substantially identical spatial form is established and at least one parameter of the improved field is changed to excite selected trapped ions sequentially for detection. The changing improved field (preferably with a supplemental field superimposed therewith) can sequentially eject selected ones of the trapped ions from the improved field for detection. An improved field comprising two quadrupole trapping fields can be established in a region defined by the ring and end electrodes of a three-dimensional quadrupole ion trap, and the amplitude of an RF (and/or DC) component (and/or the frequency of the RF component) of one or both trapping fields can be changed to sequentially excite trapped ions. Preferably, a trapping field capable of storing ions having mass to charge ratio within a selected range is established, an improved field is established by superimposing the trapping field with a second trapping field of substantially identical spatial form, and a supplemental field is also superimposed with the trapping field to cause at least some of the trapped ions in the trap region to move away from the center of the trap region.