Abstract:
The invention concerns an ion trap, including a first ring-shaped end cap electrode and a second ring-shaped end cap electrode, between which is formed a ring-shaped ion storage cell, as well as a plurality of radially inner disk-shaped ring electrodes and a plurality of radially outer disk-shaped ring electrodes, which delimit the ring-shaped ion storage cell. The invention also relates to a mass spectrometer that has such an ion trap as well as a control device that is designed to actuate the disk-shaped ring electrodes and the end cap electrodes for the storage, selection, excitation and/or detection of ions in the ring-shaped ion storage cell.
Abstract:
A device for controlling trapped ions includes a first substrate. A second substrate is disposed over the first substrate. One or a plurality of first level ion traps is configured to trap ions in a space between the first substrate and the second substrate. One or a plurality of second level ion traps is configured to trap ions in a space above the second substrate. An opening in the second substrate is provided through which ions can be transferred between a first level ion trap and a second level ion trap.
Abstract:
An ion trap device is disclosed with a method of manufacturing thereof including a substrate, first and second RF electrode rails, first and second DC electrodes on either upper or lower side of substrate, and a laser penetration passage connected to ion trapping zone from outer side of the first or second side of substrate. The substrate includes ion trapping zone in space defined by first and second sides of substrate separated by a distance with reference to width direction of ion trap device. The first and second RF electrode rails are arranged in parallel longitudinally of ion trap device. The first RF electrode is arranged on upper side of first side, the second DC electrode is arranged on lower side of first side, the first DC electrode is arranged on upper side of second side, and the second RF electrode rail is arranged on lower side of second side.
Abstract:
An ion reflector has a configuration in which multiple plate electrodes having a rectangular opening are arranged. The components are arranged so that a central axial line extending in the longitudinal direction of the opening lies on a plane which contains a straight line (Y-axis) connecting the centroidal position of an ion distribution in an ion trap and a central position on the detection surface of a detector, and a central axial line (X-axis) of an ion-ejecting direction. If the potential distribution along the central axis of the ion reflector is modified so that a portion of the reflecting field becomes a non-uniform electric field intended for improving isochronism for a group of ions to be detected, an area having an ideal potential distribution for realizing the isochronism is spread in the Y-axis direction.
Abstract:
An ion trap device is disclosed with a method of manufacturing thereof including a substrate, first and second RF electrode rails, first and second DC electrodes on either upper or lower side of substrate, and a laser penetration passage connected to ion trapping zone from outer side of the first or second side of substrate. The substrate includes ion trapping zone in space defined by first and second sides of substrate separated by a distance with reference to width direction of ion trap device. The first and second RF electrode rails are arranged in parallel longitudinally of ion trap device. The first RF electrode is arranged on upper side of first side, the second DC electrode is arranged on lower side of first side, the first DC electrode is arranged on upper side of second side, and the second RF electrode rail is arranged on lower side of second side.
Abstract:
Mass spectrometry systems or assemblies therefore include an ionizer that includes at least one planar conductor, a mass analyzer with a planar electrode assembly, and a detector comprising at least one planar conductor. The ionizer, the mass analyzer and the detector are attached together in a compact stack assembly. The stack assembly has a perimeter that bounds an area that is between about 0.01 mm2 to about 25 cm2 and the stack assembly has a thickness that is between about 0.1 mm to about 25 mm.
Abstract:
A method of ejecting ions to be analyzed from a quadrupole ion trap in which a trapping field is created by one or more RF voltages applied to one or more electrodes of the trap, the method comprising the steps of cooling the ions to be analyzed within the quadrupole ion trap until the ions are thermalized, reducing the amplitude of one or more RF voltages applied to the quadrupole ion trap and applying the reduced amplitude RF voltages for one half cycle after the one or more RF voltages have reached a zero crossing point, turning off the RF voltages applied to the quadrupole ion trap, and ejecting the ions to be analyzed from the quadrupole ion trap.
Abstract:
This invention relates generally to multi-reflection electrostatic systems, and more particularly to improvements in and relating to the Orbitrap electrostatic ion trap. A method of operating an electrostatic ion trapping device having an array of electrodes operable to mimic a single electrode is proposed, the method comprising determining three or more different voltages that, when applied to respective electrodes of the plurality of electrodes, generate an electrostatic trapping field that approximates the field that would be generated by applying a voltage to the single electrode, and applying the three or more so determined voltages to the respective electrodes. Further improvements lie in measuring a plurality of features from peaks with different intensities from one or more collected mass spectra to derive characteristics, and using the measured characteristics to improve the voltages to be applied to the plurality of electrodes.
Abstract:
Provided is an ion selection method capable of isolating and leaving a target ion in an ion trap within a short period of time and with high separating power. In a digital ion trap, after ions over a wide range of m/z near a target ion are selectively retained by rough isolation using an FNF signal or the like (S11), unnecessary ions on a low-mass side are removed with high separating power by changing the duty ratio of a rectangular voltage (S12). Furthermore, unnecessary ions on a high-mass side are removed with high separating power by resonant excitation discharge (S13).
Abstract:
Mass spectrometry systems or assemblies therefore include an ionizer that includes at least one planar conductor, a mass analyzer with a planar electrode assembly, and a detector comprising at least one planar conductor. The ionizer, the mass analyzer and the detector are attached together in a compact stack assembly. The stack assembly has a perimeter that bounds an area that is between about 0.01 mm2 to about 25 cm2 and the stack assembly has a thickness that is between about 0.1 mm to about 25 mm.