Abstract:
A miniaturized optical head provided to equip the distal end of a beam of flexible optical fibers scanned by a laser beam, is designed to come in contact with a sample and to excite the sample confocally. This optical head includes elements for correcting spherical aberrations and focusing members. The focusing members include: at least a first lens (L4) of high convergence associated with a spherical or hemispherical lens (L5) arranged at the distal end of the optical head, and elements for correcting the axial and lateral chromatic aberration provided with a single divergent lens (3b) whose curvature is substantially centered on the pupil of the optical fiber beam and arranged at the exact distance for this pupil for which the conditions of lateral achromatization coincide with the conditions of axial achromatization; this divergent lens being associated with a second convergent lens (L3a) in the form of a doublet (L3).
Abstract:
An extended depth of field (EDOF) imaging system (10) is disclosed that has an optical system (20) consisting of a single lens element (22) having a focal length (F), a thickness (TH) between 0.25F and 1.2F, and an objectwise aperture stop (AS). The optical system has a select amount of spherical aberration (SA) that allows for correcting coma by positioning the aperture stop. The optical system has an amount of field curvature (FC) such that 20 microns≦FC≦300 microns, which is made possible by the thickness of the single lens element. The imaging system has an image sensor (30) and an image processing unit (54) adapted to process raw images to form contrast-enhanced images.
Abstract:
A miniaturized optical head provided to equip the distal end of a beam of flexible optical fibres scanned by a laser beam, is designed to come in contact with a sample and to excite the sample confocally. This optical head includes elements for correcting spherical aberrations and focusing members. The focusing members include: at least a first lens (L4) of high convergence associated with a spherical or hemispherical lens (L5) arranged at the distal end of the optical head, and elements for correcting the axial and lateral chromatic aberration provided with a single divergent lens (3b) whose curvature is substantially centered on the pupil of the optical fibre beam and arranged at the exact distance for this pupil for which the conditions of lateral achromatization coincide with the conditions of axial achromatization; this divergent lens being associated with a second convergent lens (L3a) in the form of a doublet (L3).
Abstract:
An extended depth-of-field (EDOF) surveillance imaging system (8) that has a lens system (10) with a total lens power φT and an amount of spherical aberration SA where 0.2λ≦SA≦2λ. The lens system includes first lens group (G1) and a second lens group (G2). The first lens group has first and second confronting meniscus lens elements (L1, L2) that have an overall optical power φ1 such that |φ1/φT|≦0.05. The second lens group has a doublet (D1) and a most imagewise positive lens element (L5). An aperture stop (AS) is arranged either between the first and second lens groups or within the second lens group. An image sensor (30) is arranged to receive the image and form therefrom a digitized electronic raw image. An image processor receives and digitally filters the digitized electronic raw image to form a digitized contrast-enhanced image.
Abstract:
A miniature confocal optical head (4) for a confocal imaging system, in particular endoscopic, includes a point source (2a) for producing a light beam (13); a ball lens (12) arranged at the tip of the optical head, partly outside, to cause the light beam to converge in an excitation point (19) located in a subsurface field under observation (14) of a sample (15), the digital aperture of the lens and the dimension of the point source being adapted to ensure confocality of the assembly; and a scanner (10, 211, 22) for rotating the point source so that the excitation point (19) scans the field under observation. The system produces a real-time confocal image (about 10 images/sec.) of very high quality and homogeneous in the entire field (the optical aberrations are constant in the entire field due to the spherical symmetry of the ball lens), achieved through a miniature head.
Abstract:
The present invention relates to an ion implanter IMP comprising a pulsed plasma source SPL, a substrate-carrier tray PPS, and a power supply ALT for the tray. The implanter also includes a capacitor C connected directly to ground E and connected downstream from the tray power supply ALT. The invention also provides a method of using the implanter.
Abstract:
The present invention relates to a user-guided dip picking method from electrical borehole images using Hough Transform. It includes defining a top and bottom reference curve, applying the Hough Transform to the borehole image limited by the top and bottom reference dips so that the Hough Transform space is restrained in the neighborhood of the reference dips. A 1D average trace representing the extrema of the 3D Hough parameter space for each depth is then computed and the extrema exceeding a given threshold are search in this 1D trace. The position in the 3D Hough space of an extremum represents a dip event.
Abstract:
The present invention relates to a user-guided dip picking method from electrical borehole images using Hough Transform. It includes defining a top and bottom reference curve, applying the Hough Transform to the borehole image limited by the top and bottom reference dips so that the Hough Transform space is restrained in the neighborhood of the reference dips. A 1D average trace representing the extrema of the 3D Hough parameter space for each depth is then computed and the extrema exceeding a given threshold are search in this 1D trace. The position in the 3D Hough space of an extremum represents a dip event.
Abstract:
(A2) An extended depth of field (DOF) imaging system (10) is disclosed that has a corresponding extended depth of focus (DOF′) by virtue of its optical system (20) having a select amount of spherical aberration. The imaging system has an image processing unit (54) adapted to process the raw images and perform contrast enhancement to form processed images. The image processing includes restoring the defocused modulation transfer functions (MTFs) using a gain function (G) and the amount of defocus. The imaging system can include an illumination system (60) that illuminates the object being imaged to establish a distance (DH) between the optical system and the object, where distance DH is used in the restoring of the MTF. An iris-recognition (I-R) system based on the enhanced DOF imaging system is also disclosed.; Optical system embodiments for use in the DOF imaging system that can provide select amounts of spherical aberration—and thus select increases in DOF—without increasing the adverse impact of other aberrations on image formation are also disclosed.
Abstract:
A method of heap leaching including forming a heap lift, installing a horizontal solution collection system between the heap layers including a horizontal tubing with a wireline data collection tool disposed therein, providing a heap leach model for modeling the heap leach operation including a solvent formulation and a irrigation setting, obtaining collected data from the wireline data collection tool while irrigating the heap lift, the collected data including in-situ material parameters of the heap layers and in-situ solution parameters of the solution flowing in the heap layers, modeling the heap leach operation using the collected data based on the heap leach model to generate a result, and adjusting the heap leach operation based on the result.