Abstract:
Methods for abutting two cells with different sized diffusion regions and the resulting devices are provided. Embodiments include abutting a first cell having first drain and source diffusion regions and a second cell having second drain and source diffusion regions, larger than the first diffusion regions, by: forming a dummy gate at a boundary between the two cells; forming a continuous drain diffusion region having an upper portion crossing the dummy gate and encompassing the entire first drain diffusion region and part of the second drain diffusion region and having a lower portion beginning over the dummy gate and encompassing a remainder of the second drain diffusion region; forming a continuous source diffusion region that is the mirror image of the continuous drain diffusion region; and forming a poly-cut mask over the dummy gate between, but separated from, the continuous drain and source diffusion regions.
Abstract:
An approach for providing MOL constructs using diffusion contact structures is disclosed. Embodiments include: providing a first diffusion region in a substrate; providing, via a first lithography process, a first diffusion contact structure; providing, via a second lithography process, a second diffusion contact structure; and coupling the first diffusion contact structure to the first diffusion region and the second diffusion contact structure. Embodiments include: providing a second diffusion region in the substrate; providing a diffusion gap region between the first and second diffusion regions; providing the diffusion contact structure over the diffusion gap region; and coupling, via the diffusion contact structure, the first and second diffusion regions.
Abstract:
Methods for forming abutting FinFET cells with a single dummy gate and continuous fins, and the resulting devices, are disclosed. Embodiments may include forming one or more continuous fins on a substrate, forming gates perpendicular to and over the one or more continuous fins to form a first FinFET cell and a second FinFET cell, and forming source and drain contact lines parallel to and between the gates, wherein a source contact line of the first FinFET cell is adjacent to a drain contact line of the second FinFET cell, and the source contact line and the drain contact line are on opposite sides of a gate.