Abstract:
Systems and methods are provided herein relating to audio matching. Interest points that are onsets are generally very efficient in audio matching in that they are robust to multiple types of distortion. Prominent onsets can be detected within an audio signal excerpt as interest points and combined as a function of a set of interest points to form a descriptor. Descriptors associated with an audio signal excerpt that contain a set of prominent onsets as interest points can be used in matching the audio signal excerpt to an audio reference. The benefits in generating and using prominent onsets within descriptors improve the accuracy of an audio matching system.
Abstract:
Systems and techniques for removing a sound recording from an audio recording (e.g., an audio recording embedded in a media file) are presented. The system can include an identification component, a first subtraction component and a second subtraction component. The identification component identifies a sound recording in a mixed audio recording. The first subtraction component determines a local linear transformation of the sound recording and subtracts the local linear transformation of the sound recording from the mixed audio recording to generate a new mixed audio recording. The second subtraction component compares one or more segments of the sound recording with one or more corresponding segments of the new mixed audio recording and reduces a power level of the new mixed audio recording based at least in part on correlation of the one or more corresponding segments with the one or more segments.
Abstract:
Systems and methods facilitating removal of content from audio files are described. A method includes identifying a sound recording in a first audio file, identifying a reference file having at least a defined level of similarity to the sound recording, and processing the first audio file to remove the sound recording and generate a second audio file. In some embodiments, winner-take-all coding and Hough transforms are employed for determining alignment and rate adjustment of the reference file in the first audio file. After alignment, the reference file is filtered in the frequency domain to increase similarity between the reference file and the sound recording. The frequency domain representation (FR) of the filtered version is subtracted from the FR first audio and the result converted to a time representation of the second audio file. In some embodiments, spectral subtraction is also performed to generate a further improved second audio file.
Abstract:
Systems and methods for providing audio localization are provided. In some aspects, a method includes receiving phase offsets of a plurality of fixed transmitters from a source other than the plurality of fixed transmitters, detecting an audio localization signal from each of the plurality of fixed transmitters, determining a received phase of the audio localization signal from each of the plurality of fixed transmitters, determining time differences of flight from the mobile receiver to the plurality of fixed transmitters using the received phases, determining distance differences from the mobile receiver to the plurality of fixed transmitters using the time differences of flight, and determining the location of the mobile receiver by performing multilateration using the distance differences.
Abstract:
Systems and methods facilitating removal of content from audio files are described. A method includes identifying a sound recording in a first audio file, identifying a reference file having at least a defined level of similarity to the sound recording, and processing the first audio file to remove the sound recording and generate a second audio file. In some embodiments, winner-take-all coding and Hough transforms are employed for determining alignment and rate adjustment of the reference file in the first audio file. After alignment, the reference file is filtered in the frequency domain to increase similarity between the reference file and the sound recording. The frequency domain representation (FR) of the filtered version is subtracted from the FR first audio and the result converted to a time representation of the second audio file. In some embodiments, spectral subtraction is also performed to generate a further improved second audio file.
Abstract:
The present invention relates to the field of panoramic still and motion photography. In a first embodiment, a camera apparatus for panoramic photography includes a first image sensor positioned to capture a first image. The first image sensor has a rolling-shutter readout arranged in portrait orientation. The camera apparatus also includes second image sensor positioned to capture a second image. The second image sensor has a rolling-shutter readout arranged in portrait orientation. Finally, the camera apparatus includes a controller configured to signal the second image sensor to start capturing the second image before the first image sensor finishes capturing the first image. At least a portion of the first image is in front of the second image relative to a forward direction of the camera apparatus.
Abstract:
Implementations generally relate to ultrasonic communication between devices. In some implementations, a method includes receiving a data signal, where the data signal is transmitted and received in an indoor environment. The method further includes demodulating the data signal based on direct sequence spread spectrum.
Abstract:
The disclosure includes a system and method for detecting fine grain copresence between users. The system includes a processor and a memory storing instructions that when executed cause the system to: process one or more signals to determine coarse grain location information of a first device and a second device; determine whether the first device and the second device are copresent based on the coarse grain location information; in response to determining that the first device and the second device are copresent based on the coarse grain location information, transmit a signal to the second device to alert the second device to listen for a fine grain copresence token from the first device; and refine copresence based on receiving an indication that the second device has received the fine grain copresence token.