Abstract:
This disclosure relates to dynamic split-frame preview of video editing effects. An editing component determines a set of editing effects for the video, generates a copy of the video, applies the set of editing effects to the copy, and provides the video and the copy to a rendering component. The rendering component generates a mask based on a set of mask criteria, renders a split-frame composite video using the video and the edited video based at least in part on the mask, and provides playback of the split-frame composite video. The split-frame composite video provides a dynamic split-frame preview of video editing effects, wherein one frame includes the video, and another frame includes the edited copy of the video.
Abstract:
Systems and techniques for removing a sound recording from an audio recording (e.g., an audio recording embedded in a media file) are presented. The system can include an identification component, a first subtraction component and a second subtraction component. The identification component identifies a sound recording in a mixed audio recording. The first subtraction component determines a local linear transformation of the sound recording and subtracts the local linear transformation of the sound recording from the mixed audio recording to generate a new mixed audio recording. The second subtraction component compares one or more segments of the sound recording with one or more corresponding segments of the new mixed audio recording and reduces a power level of the new mixed audio recording based at least in part on correlation of the one or more corresponding segments with the one or more segments.
Abstract:
Systems and methods are disclosed for spherical three dimensional video rendering for virtual reality. A method includes receiving a spherical two-dimensional (2D) input image and a corresponding spherical depth map to be used in a creation of a spherical three-dimensional (3D) video, determining, by a processing device, a pixel shift value for each pixel of the spherical 2D input image based on the spherical depth map, and generating, based on the spherical 2D input image and the pixel shift values, a modified spherical image, wherein the modified spherical image in combination with the spherical 2d input image comprises at least one frame in the spherical 3D video.
Abstract:
Systems and techniques for removing a sound recording from an audio recording (e.g., an audio recording embedded in a media file) are presented. The system can include an identification component, a first subtraction component and a second subtraction component. The identification component identifies a sound recording in a mixed audio recording. The first subtraction component determines a local linear transformation of the sound recording and subtracts the local linear transformation of the sound recording from the mixed audio recording to generate a new mixed audio recording. The second subtraction component compares one or more segments of the sound recording with one or more corresponding segments of the new mixed audio recording and reduces a power level of the new mixed audio recording based at least in part on correlation of the one or more corresponding segments with the one or more segments.
Abstract:
Systems and techniques for removing a sound recording from an audio recording (e.g., an audio recording embedded in a media file) are presented. The system can include an identification component, a first subtraction component and a second subtraction component. The identification component identifies a sound recording in a mixed audio recording. The first subtraction component determines a local linear transformation of the sound recording and subtracts the local linear transformation of the sound recording from the mixed audio recording to generate a new mixed audio recording. The second subtraction component compares one or more segments of the sound recording with one or more corresponding segments of the new mixed audio recording and reduces a power level of the new mixed audio recording based at least in part on correlation of the one or more corresponding segments with the one or more segments.
Abstract:
Systems and methods can facilitate identifying 2D content in media that is suitable for conversion into 3D content, and converting the suitable 2D content into 3D content. The identifying can be based on quality criteria applied to the 2D content. For 2D content converted into 3D content, a user can be offered a choice between viewing the content in its original 2D form, or viewing the content in its converted, 3D form. The systems and methods can thereby provide users with greater choice of content and an enhanced viewing experience.
Abstract:
Systems and techniques for removing a sound recording from an audio recording (e.g., an audio recording embedded in a media file) are presented. The system can include an identification component, a first subtraction component and a second subtraction component. The identification component identifies a sound recording in a mixed audio recording. The first subtraction component determines a local linear transformation of the sound recording and subtracts the local linear transformation of the sound recording from the mixed audio recording to generate a new mixed audio recording. The second subtraction component compares one or more segments of the sound recording with one or more corresponding segments of the new mixed audio recording and reduces a power level of the new mixed audio recording based at least in part on correlation of the one or more corresponding segments with the one or more segments.