Abstract:
A sample-container holding member is detachably attached to an integrator via a fixing member and holds a sample container, which comprises a cell containing a sample and a cap, in a state where the sample container is placed in the integrator. The sample-container holding member comprises a pillar-shaped support portion fixed to the fixing member and a container attaching portion which is provided at an end of the support portion in the axial direction and to which the sample container is attached. The container attaching portion comprises a housing portion housing a cap and a holding portion having contact with at least three points on an outer surface of the cell and holding the sample container.
Abstract:
A spectroscopic measurement apparatus includes a light source, an integrator, a spectroscopic detector, and an analysis unit. The integrator includes an internal space in which a measurement object is disposed, a light input portion for inputting light to the internal space, a light output portion for outputting light from the internal space, a sample attachment portion for attaching the measurement object, and a filter attachment portion for attaching a filter unit. The filter unit has a transmission spectrum in which an attenuation rate for excitation light is larger than an attenuation rate for up-conversion light, and attenuates the light output from the light output portion. The analysis unit analyzes luminous efficiency of the measurement object on the basis of the transmission spectrum data and the spectroscopic spectrum data acquired by the spectroscopic detector.
Abstract:
A measuring device includes: an excitation light source; an integrating sphere; an excitation optical system; a light detector; and a first detection optical system, wherein the first detection optical system has an opening portion, the excitation optical system and the first detection optical system have a separation optical element, a first converging element, and a second converging element, wherein the optical axis of the excitation light incident on the subject to be measured and the optical axis of the light to be measured emitted from the integrating sphere obliquely intersect with each other by means of the separation optical element and the first converging element, and wherein an irradiation spot and the opening portion are in an optically conjugate relationship by means of the first converging element and the second converging element.
Abstract:
A film thickness measuring apparatus measures a film thickness of a sample during a manufacturing step. The film thickness measuring apparatus includes a lens focusing light (plasma light) generated in the manufacturing step and reflected by one surface of the sample, an inclined dichroic mirror having a transmissivity and a reflectivity changing in accordance with a wavelength in a predetermined wavelength region and separating light focused by the lens through transmission and reflection, an area sensor capturing an image of light separated by the inclined dichroic mirror, and a control apparatus estimating the film thickness of the sample on the basis of a signal from the area sensor capturing an image of light and obtaining a film thickness distribution on the one surface of the sample. Light reflected by the sample includes light having a wavelength included in the predetermined wavelength region of the inclined dichroic mirror.
Abstract:
A spectrometry device includes a light source, an integrator configured to have an internal space in which a long afterglow emission material is disposed and output detection light from the internal space, a spectroscopic detector, an analysis unit configured to analyze a photoluminescence quantum yield of the long afterglow emission material, and a control unit configured to control switching between presence and absence of input of excitation light to the internal space and an exposure time in the spectroscopic detector. The control unit controls the light source so that the input of the excitation light to the internal space is maintained in a first period and the input of the excitation light to the internal space is stopped in a second period, and controls the spectroscopic detector so that an exposure time in the second period becomes longer than an exposure time in the first period.
Abstract:
A spectrometry device includes: an integrating sphere which includes an inner wall surface and an attachment hole; an adapter which includes a guide hole guiding the measurement target light and is disposed in the integrating sphere; a plate which includes a first surface covering the guide hole from the outside of the integrating sphere and allowing a sample to be mounted thereon and a second surface and through which the measurement target light is transmitted; a holder which includes a concave portion mounting the plate thereon and is attached to the attachment hole; and a spectral detector configured to detect the measurement target light. The concave portion includes a bottom surface facing the second surface and a side surface surrounding the periphery of the plate. The bottom surface and the side surface are coated with a reflective material reflecting the measurement target light.
Abstract:
A spectroscopic measurement apparatus includes a light source, an integrator, a first spectroscopic detector, a second spectroscopic detector, and an analysis unit. The integrator includes an internal space in which a measurement object is disposed, a light input portion for inputting light to the internal space, a light output portion for outputting light from the internal space, and a sample attachment portion for attaching the measurement object. The first spectroscopic detector receives the light output from the integrator, disperses the light of a first wavelength region, and acquires first spectrum data. The second spectroscopic detector receives the light output from the integrator, disperses the light of a second wavelength region, and acquires second spectrum data. The first wavelength region and the second wavelength region include a wavelength region partially overlapping each other.
Abstract:
A spectral measurement apparatus includes a light source for generating a excitation light; an integrator having an input opening portion and an output opening portion; a housing portion arranged in the integrator and for housing a sample; an incidence optical system for making the excitation light incident to the sample; a photodetector for detecting a light to be measured output from the output opening portion; and an analysis means for calculating a light absorptance of the sample, based on a detection value detected by the photodetector, and an irradiation area with the excitation light at a position of incidence to the sample is set larger than an irradiated area of the sample, and the analysis means performs an area ratio correction regarding the irradiation area with the excitation light and the irradiated area of the sample, with respect to the light absorptance calculated.
Abstract:
A spectral measurement apparatus for irradiating a sample as a measurement object with excitation light and detecting light to be measured includes a light source generating the excitation light; an integrator having an input opening portion through which the excitation light is input, and an output opening portion from which the light to be measured is output; a housing portion arranged in the integrator and housing the sample; an incidence optical system making the excitation light incident to the sample; a photodetector detecting the light to be measured output from the output opening portion; and an analysis device calculating a quantum yield of the sample, based on a detection value detected by the photodetector, and the excitation light is applied to the sample so as to include the sample.